These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 32540623)

  • 1. Sleep in highly automated driving: Takeover performance after waking up.
    Wörle J; Metz B; Othersen I; Baumann M
    Accid Anal Prev; 2020 Sep; 144():105617. PubMed ID: 32540623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Psychophysiological responses to takeover requests in conditionally automated driving.
    Du N; Yang XJ; Zhou F
    Accid Anal Prev; 2020 Dec; 148():105804. PubMed ID: 33128991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From partial and high automation to manual driving: Relationship between non-driving related tasks, drowsiness and take-over performance.
    Naujoks F; Höfling S; Purucker C; Zeeb K
    Accid Anal Prev; 2018 Dec; 121():28-42. PubMed ID: 30205284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding take-over performance of high crash risk drivers during conditionally automated driving.
    Lin Q; Li S; Ma X; Lu G
    Accid Anal Prev; 2020 Aug; 143():105543. PubMed ID: 32485431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of unreliable automation, non-driving related task, and takeover time budget on drivers' takeover performance and workload.
    Shahini F; Park J; Welch K; Zahabi M
    Ergonomics; 2023 Feb; 66(2):182-197. PubMed ID: 35451915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling takeover behavior in level 3 automated driving via a structural equation model: Considering the mediating role of trust.
    Jin M; Lu G; Chen F; Shi X; Tan H; Zhai J
    Accid Anal Prev; 2021 Jul; 157():106156. PubMed ID: 33957474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Promote or inhibit: An inverted U-shaped effect of workload on driver takeover performance.
    Ma S; Zhang W; Yang Z; Kang C; Wu C; Chai C; Shi J; Li H
    Traffic Inj Prev; 2020; 21(7):482-487. PubMed ID: 32822218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of scheduled manual driving on drowsiness and response to take over request: A simulator study towards understanding drivers in automated driving.
    Wu Y; Kihara K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    Accid Anal Prev; 2019 Mar; 124():202-209. PubMed ID: 30665055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Olfactory Facilitation of Takeover Performance in Highly Automated Driving.
    Tang Q; Guo G; Zhang Z; Zhang B; Wu Y
    Hum Factors; 2021 Jun; 63(4):553-564. PubMed ID: 31999480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncritical State Transitions During Conditionally Automated Driving on German Freeways: Effects of Non-Driving Related Tasks on Takeover Time and Takeover Quality.
    Naujoks F; Purucker C; Wiedemann K; Marberger C
    Hum Factors; 2019 Jun; 61(4):596-613. PubMed ID: 30689440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring driving anger-caused impairment of takeover performance among professional taxi drivers during partially automated driving.
    Pan H; Payre W; Gao Z; Wang Y
    Accid Anal Prev; 2024 Sep; 205():107686. PubMed ID: 38909484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prior Familiarization With Takeover Requests Affects Drivers' Takeover Performance and Automation Trust.
    Hergeth S; Lorenz L; Krems JF
    Hum Factors; 2017 May; 59(3):457-470. PubMed ID: 27923886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age differences in the takeover of vehicle control and engagement in non-driving-related activities in simulated driving with conditional automation.
    Clark H; Feng J
    Accid Anal Prev; 2017 Sep; 106():468-479. PubMed ID: 27686942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analysis of physiological responses as indicators of driver takeover readiness in conditionally automated driving.
    Deng M; Gluck A; Zhao Y; Li D; Menassa CC; Kamat VR; Brinkley J
    Accid Anal Prev; 2024 Feb; 195():107372. PubMed ID: 37979464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-related differences in effects of non-driving related tasks on takeover performance in automated driving.
    Wu Y; Kihara K; Hasegawa K; Takeda Y; Sato T; Akamatsu M; Kitazaki S
    J Safety Res; 2020 Feb; 72():231-238. PubMed ID: 32199568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting driver takeover performance in conditionally automated driving.
    Du N; Zhou F; Pulver EM; Tilbury DM; Robert LP; Pradhan AK; Yang XJ
    Accid Anal Prev; 2020 Dec; 148():105748. PubMed ID: 33099127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What happens when drivers of automated vehicles take over control in critical brake situations?
    Roche F; Thüring M; Trukenbrod AK
    Accid Anal Prev; 2020 Sep; 144():105588. PubMed ID: 32531374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Taking Over Control From Highly Automated Vehicles in Complex Traffic Situations: The Role of Traffic Density.
    Gold C; Körber M; Lechner D; Bengler K
    Hum Factors; 2016 Jun; 58(4):642-52. PubMed ID: 26984515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of takeover request lead time on drivers' situation awareness for manually exiting from freeways: A web-based study on level 3 automated vehicles.
    Tan X; Zhang Y
    Accid Anal Prev; 2022 Apr; 168():106593. PubMed ID: 35180465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Non-Driving Related Task Modalities on Takeover Performance in Highly Automated Driving.
    Wandtner B; Schömig N; Schmidt G
    Hum Factors; 2018 Sep; 60(6):870-881. PubMed ID: 29617161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.