BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32541105)

  • 1. Surface and coherent contributions of plasmon fields to ultraviolet tip-enhanced coherent anti-Stokes Raman scattering.
    Feng Y; Gao M; Wang Y; Yang Z; Meng L
    Nanotechnology; 2020 Sep; 31(39):395204. PubMed ID: 32541105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical investigation of a multi-resonance plasmonic substrate for enhanced coherent anti-Stokes Raman scattering.
    Wang J; Zhang J; Tian Y; Fan C; Mu K; Chen S; Ding P; Liang E
    Opt Express; 2017 Jan; 25(1):497-507. PubMed ID: 28085843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The performance of surface enhanced Raman scattering and spatial resolution with triangular plate dimer from ultra-ultraviolet to near-infrared range.
    Wei Y; Pei H; Yan B; Zhu Y
    J Phys Condens Matter; 2021 Nov; 34(4):. PubMed ID: 34670211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep ultraviolet tip-enhanced fluorescence.
    Meng L; Gao M; Sun M
    Nanotechnology; 2019 Jan; 30(3):035202. PubMed ID: 30418945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational spectroscopy and imaging with non-resonant coherent anti-Stokes Raman scattering: double stimulated Raman scattering scheme.
    Choi DS; Kim CH; Lee T; Nah S; Rhee H; Cho M
    Opt Express; 2019 Aug; 27(16):23558-23575. PubMed ID: 31510631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled wave equations theory of surface-enhanced femtosecond stimulated Raman scattering.
    McAnally MO; McMahon JM; Van Duyne RP; Schatz GC
    J Chem Phys; 2016 Sep; 145(9):094106. PubMed ID: 27608988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic lens focused longitudinal field excitation for tip-enhanced Raman spectroscopy.
    Zhang M; Wang J
    Nanoscale Res Lett; 2015; 10():189. PubMed ID: 25977661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-plasmon resonances enhanced two-photon coherent anti-Stokes Raman scattering by nanorods.
    Wang Y; Zhang T; Li J; Wang C; Li X; Sun M; Fu Z; Zhang Z; Zheng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Apr; 231():118117. PubMed ID: 32066077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced coherent anti-Stokes Raman scattering based on coupled nanohole-slit arrays.
    Feng Y; Wang Y; Shao F; Meng L; Sun M
    Phys Chem Chem Phys; 2022 Jun; 24(22):13911-13921. PubMed ID: 35621057
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable plasmon-induced catalytic reaction by surface-enhanced and tip-enhanced Raman spectroscopy.
    Liu Y; Zhao Y; Zhang L; Yan Y; Jiang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Aug; 219():539-546. PubMed ID: 31078821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance.
    Zhang Y; Zhen YR; Neumann O; Day JK; Nordlander P; Halas NJ
    Nat Commun; 2014 Jul; 5():4424. PubMed ID: 25020075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent stokes scattering from gold nanorods: critical dimensions and multicolor near-resonant plasmon excitation.
    Kim H; Herzing A; Michaels CA; Bryant GW; Stranick SJ
    Nanoscale; 2011 Oct; 3(10):4290-5. PubMed ID: 21912802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo coherent anti-Stokes Raman scattering imaging of sciatic nerve tissue.
    Huff TB; Cheng JX
    J Microsc; 2007 Feb; 225(Pt 2):175-82. PubMed ID: 17359252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculated shape dependence of electromagnetic field in tip-enhanced Raman scattering by using a monopole antenna model.
    Kitahama Y; Itoh T; Suzuki T
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():142-147. PubMed ID: 29339023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear Raman Effects Enhanced by Surface Plasmon Excitation in Planar Refractory Nanoantennas.
    Kharintsev SS; Kharitonov AV; Saikin SK; Alekseev AM; Kazarian SG
    Nano Lett; 2017 Sep; 17(9):5533-5539. PubMed ID: 28813607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and electromagnetic mechanisms of tip-enhanced Raman scattering.
    Sun M; Fang Y; Yang Z; Xu H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9412-9. PubMed ID: 19830324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.