These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32541451)

  • 1. Activin B signaling may promote the conversion of normal fibroblasts to scar fibroblasts.
    Deng SK; Tang JZ; Jin Y; Hu PH; Wang JF; Zhang XW
    Medicine (Baltimore); 2020 Jun; 99(24):e20253. PubMed ID: 32541451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Mechanism of transcriptional regulation of Meox1 by transforming growth factor β (1) and its effect on cell migration of adult human dermal fibroblasts].
    Wei ZY; Li HS; Zhou JY; Han C; Dong H; Wu YZ; He WF; Tian Y; Luo GX
    Zhonghua Shao Shang Za Zhi; 2020 Mar; 36(3):224-233. PubMed ID: 32241049
    [No Abstract]   [Full Text] [Related]  

  • 3. Thrombospondin-4 critically controls transforming growth factor β1 induced hypertrophic scar formation.
    Qian W; Li N; Cao Q; Fan J
    J Cell Physiol; 2018 Jan; 234(1):731-739. PubMed ID: 30132849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of the Transforming Growth Factor-β1 (TGF-β1) Signaling Pathway on Cell Proliferation and Cell Migration are Mediated by Ubiquitin Specific Protease 4 (USP4) in Hypertrophic Scar Tissue and Primary Fibroblast Cultures.
    Huang Y; Wang Y; Wang X; Lin L; Wang P; Sun J; Jiang L
    Med Sci Monit; 2020 Apr; 26():e920736. PubMed ID: 32308208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of lysyl oxidase like 1 inhibits the proliferation and pro-fibrotic effects of transforming growth factor-β1-induced hypertrophic scar fibroblasts.
    Ying M; Chen Y; Yuan B
    Can J Physiol Pharmacol; 2021 Dec; 99(12):1272-1279. PubMed ID: 34283938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loureirin B inhibits fibroblast proliferation and extracellular matrix deposition in hypertrophic scar via TGF-β/Smad pathway.
    Bai X; He T; Liu J; Wang Y; Fan L; Tao K; Shi J; Tang C; Su L; Hu D
    Exp Dermatol; 2015 May; 24(5):355-60. PubMed ID: 25683490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ALA-PDT promotes the death and contractile capacity of hypertrophic scar fibroblasts through inhibiting the TGF-β1/Smad2/3/4 signaling pathway.
    Qu Z; Chen Y; Du K; Qiao J; Chen L; Chen J; Wei L
    Photodiagnosis Photodyn Ther; 2024 Feb; 45():103915. PubMed ID: 38128289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smad2 and Smad3 as mediators of the response of adventitial fibroblasts induced by transforming growth factor β1.
    Ren M; Wang B; Zhang J; Liu P; Lv Y; Liu G; Jiang H; Liu F
    Mol Med Rep; 2011; 4(3):561-7. PubMed ID: 21468608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of silencing Smad ubiquitination regulatory factor 2 on the function of human hypertrophic scar-derived fibroblasts].
    Zhang Z; Kuang F; Liu CL; Chen B; Tang WB; Li XJ
    Zhonghua Shao Shang Za Zhi; 2017 Mar; 33(3):145-151. PubMed ID: 28316163
    [No Abstract]   [Full Text] [Related]  

  • 10. Expression of Smad protein by normal skin fibroblasts and hypertrophic scar fibroblasts in response to transforming growth factor beta1.
    Xie JL; Qi SH; Pan S; Xu YB; Li TZ; Liu XS; Liu P
    Dermatol Surg; 2008 Sep; 34(9):1216-24; discussion 1224-5. PubMed ID: 18616749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antifibrotic effects of relaxin in human renal fibroblasts are mediated in part by inhibition of the Smad2 pathway.
    Heeg MH; Koziolek MJ; Vasko R; Schaefer L; Sharma K; Müller GA; Strutz F
    Kidney Int; 2005 Jul; 68(1):96-109. PubMed ID: 15954899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smad ubiquitination regulatory factor 2 expression is enhanced in hypertrophic scar fibroblasts from burned children.
    Zhang Z; Finnerty CC; He J; Herndon DN
    Burns; 2012 Mar; 38(2):236-46. PubMed ID: 21920670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncostatin M is a novel inhibitor of TGF-β1-induced matricellular protein expression.
    Sarközi R; Hauser C; Noppert SJ; Kronbichler A; Pirklbauer M; Haller VM; Grillari J; Grillari-Voglauer R; Mayer G; Schramek H
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1014-25. PubMed ID: 21816755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GP73 promotes invasion and metastasis of bladder cancer by regulating the epithelial-mesenchymal transition through the TGF-β1/Smad2 signalling pathway.
    Yang HJ; Liu GL; Liu B; Liu T
    J Cell Mol Med; 2018 Mar; 22(3):1650-1665. PubMed ID: 29349903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transforming growth factor β1 promotes fibroblast-like synoviocytes migration and invasion via TGF-β1/Smad signaling in rheumatoid arthritis.
    Zhu D; Zhao J; Lou A; Huang Q; OuYang Q; Zhu J; Fan M; He Y; Ren H; Yang M
    Mol Cell Biochem; 2019 Sep; 459(1-2):141-150. PubMed ID: 31297660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive thrombospondin-1 overexpression contributes to autocrine transforming growth factor-beta signaling in cultured scleroderma fibroblasts.
    Mimura Y; Ihn H; Jinnin M; Asano Y; Yamane K; Tamaki K
    Am J Pathol; 2005 May; 166(5):1451-63. PubMed ID: 15855645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transforming growth factor (TGF)-β type I receptor kinase (ALK5) inhibitor alleviates profibrotic TGF-β1 responses in fibroblasts derived from Peyronie's plaque.
    Piao S; Choi MJ; Tumurbaatar M; Kim WJ; Jin HR; Shin SH; Tuvshintur B; Yin GN; Song JS; Kwon MH; Lee SJ; Han JY; Kim SJ; Ryu JK; Suh JK
    J Sex Med; 2010 Oct; 7(10):3385-95. PubMed ID: 20233292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pluripotency gene expression and growth control in cultures of peripheral blood monocytes during their conversion into programmable cells of monocytic origin (PCMO): evidence for a regulatory role of autocrine activin and TGF-β.
    Ungefroren H; Hyder A; Hinz H; Groth S; Lange H; El-Sayed KM; Ehnert S; Nüssler AK; Fändrich F; Gieseler F
    PLoS One; 2015; 10(2):e0118097. PubMed ID: 25707005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of ERK1/2 and p38 mitogen-activated protein kinases in the regulation of thrombospondin-1 by TGF-beta1 in rat proximal tubular cells and mouse fibroblasts.
    Nakagawa T; Lan HY; Glushakova O; Zhu HJ; Kang DH; Schreiner GF; Böttinger EP; Johnson RJ; Sautin YY
    J Am Soc Nephrol; 2005 Apr; 16(4):899-904. PubMed ID: 15716330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thrombospondin-1 is a novel negative regulator of liver regeneration after partial hepatectomy through transforming growth factor-beta1 activation in mice.
    Hayashi H; Sakai K; Baba H; Sakai T
    Hepatology; 2012 May; 55(5):1562-73. PubMed ID: 22105716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.