These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32541674)

  • 1. Direct detection of mRNA expression in microbial cells by fluorescence in situ hybridization using RNase H-assisted rolling circle amplification.
    Takahashi H; Horio K; Kato S; Kobori T; Watanabe K; Aki T; Nakashimada Y; Okamura Y
    Sci Rep; 2020 Jun; 10(1):9588. PubMed ID: 32541674
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of low-copy-number genomic DNA sequences in individual bacterial cells by using peptide nucleic acid-assisted rolling-circle amplification and fluorescence in situ hybridization.
    Smolina I; Lee C; Frank-Kamenetskii M
    Appl Environ Microbiol; 2007 Apr; 73(7):2324-8. PubMed ID: 17293504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(A) RNA in Bacillus subtilis: identification of the polyadenylylation site of flagellin mRNA.
    Cao GJ; Sarkar N
    FEMS Microbiol Lett; 1993 Apr; 108(3):281-5. PubMed ID: 7685726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. mRNA-targeted fluorescent in situ hybridization (FISH) of Gram-negative bacteria without template amplification or tyramide signal amplification.
    Coleman JR; Culley DE; Chrisler WB; Brockman FJ
    J Microbiol Methods; 2007 Dec; 71(3):246-55. PubMed ID: 17949838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNase H-assisted RNA-primed rolling circle amplification for targeted RNA sequence detection.
    Takahashi H; Ohkawachi M; Horio K; Kobori T; Aki T; Matsumura Y; Nakashimada Y; Okamura Y
    Sci Rep; 2018 May; 8(1):7770. PubMed ID: 29773824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualization of Gene Reciprocity among Lactic Acid Bacteria in Yogurt by RNase H-Assisted Rolling Circle Amplification-Fluorescence
    Horio K; Takahashi H; Kobori T; Watanabe K; Aki T; Nakashimada Y; Okamura Y
    Microorganisms; 2021 Jun; 9(6):. PubMed ID: 34204984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of RNase H activity via real-time monitoring of target-triggered rolling circle amplification.
    Lee CY; Kang KS; Park KS; Park HG
    Mikrochim Acta; 2017 Dec; 185(1):53. PubMed ID: 29594533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Sequencing: A High-Throughput, Multi-Targeted Gene Expression Profiling Technique for Cell Typing in Tissue Sections.
    Hilscher MM; Gyllborg D; Yokota C; Nilsson M
    Methods Mol Biol; 2020; 2148():313-329. PubMed ID: 32394391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-Phase Nucleic Acid Sequence-Based Amplification and Length-Scale Effects during RNA Amplification.
    Ma Y; Teng F; Libera M
    Anal Chem; 2018 Jun; 90(11):6532-6539. PubMed ID: 29653055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the fixation/permeabilization step on peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria.
    Rocha R; Almeida C; Azevedo NF
    PLoS One; 2018; 13(5):e0196522. PubMed ID: 29851961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of PNA openers for fluorescence-based detection of bacterial DNA.
    Smolina I
    Methods Mol Biol; 2013; 1039():223-31. PubMed ID: 24026699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arginine Patch Predicts the RNA Annealing Activity of Hfq from Gram-Negative and Gram-Positive Bacteria.
    Zheng A; Panja S; Woodson SA
    J Mol Biol; 2016 Jun; 428(11):2259-2264. PubMed ID: 27049793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amplification of low quantity bacterial RNA for microarray studies: time-course analysis of Leptospirillum ferrooxidans under nitrogen-fixing conditions.
    Moreno-Paz M; Parro V
    Environ Microbiol; 2006 Jun; 8(6):1064-73. PubMed ID: 16689727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells.
    Ge J; Zhang LL; Liu SJ; Yu RQ; Chu X
    Anal Chem; 2014 Feb; 86(3):1808-15. PubMed ID: 24417222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells.
    Taniguchi Y; Choi PJ; Li GW; Chen H; Babu M; Hearn J; Emili A; Xie XS
    Science; 2010 Jul; 329(5991):533-8. PubMed ID: 20671182
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimized RNA amplification method for prokaryotic expression profiling analysis.
    Cao FL; Liu HH; Wang YH; Liu Y; Zhang XY; Zhao JQ; Sun YM; Zhou J; Zhang L
    Appl Microbiol Biotechnol; 2010 Jun; 87(1):343-52. PubMed ID: 20437237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging rRNA Methylation in Bacteria by MR-FISH.
    Ganzinger KA; Challand MR; Spencer J; Klenerman D; Ranasinghe RT
    Methods Mol Biol; 2019; 2038():89-107. PubMed ID: 31407280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiplex FISH analysis of a six-species bacterial biofilm.
    Thurnheer T; Gmür R; Guggenheim B
    J Microbiol Methods; 2004 Jan; 56(1):37-47. PubMed ID: 14706749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of tryptophan from chorismate: comparative aspects.
    Crawford IP
    Methods Enzymol; 1987; 142():293-300. PubMed ID: 3298977
    [No Abstract]   [Full Text] [Related]  

  • 20. Toehold-mediated ligation-free rolling circle amplification enables sensitive and rapid imaging of messenger RNAs in situ in cells.
    Chen J; Zhang Y; Chen D; Wang T; Yin W; Yang HH; Xu Y; Chen JX; Dai Z; Zou X
    Anal Chim Acta; 2021 May; 1160():338463. PubMed ID: 33894961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.