These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32541819)

  • 1. Motifs enable communication efficiency and fault-tolerance in transcriptional networks.
    Roy S; Ghosh P; Barua D; Das SK
    Sci Rep; 2020 Jun; 10(1):9628. PubMed ID: 32541819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating MicroRNA and transcription factor co-regulatory networks in colorectal cancer.
    Wang H; Luo J; Liu C; Niu H; Wang J; Liu Q; Zhao Z; Xu H; Ding Y; Sun J; Zhang Q
    BMC Bioinformatics; 2017 Sep; 18(1):388. PubMed ID: 28865443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. What determines the assembly of transcriptional network motifs in Escherichia coli?
    Camas FM; Poyatos JF
    PLoS One; 2008; 3(11):e3657. PubMed ID: 18987754
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs.
    Ma HW; Kumar B; Ditges U; Gunzer F; Buer J; Zeng AP
    Nucleic Acids Res; 2004; 32(22):6643-9. PubMed ID: 15604458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the hierarchical structure of the B. subtilis transcriptional regulatory network.
    Kumar S; Vendruscolo M; Singh A; Kumar D; Samal A
    Mol Biosyst; 2015 Mar; 11(3):930-41. PubMed ID: 25599335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterns of subnet usage reveal distinct scales of regulation in the transcriptional regulatory network of Escherichia coli.
    Marr C; Theis FJ; Liebovitch LS; Hütt MT
    PLoS Comput Biol; 2010 Jul; 6(7):e1000836. PubMed ID: 20617198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.
    Ahnert SE; Fink TM
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27440255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk and the Dynamical Modularity of Feed-Forward Loops in Transcriptional Regulatory Networks.
    Rowland MA; Abdelzaher A; Ghosh P; Mayo ML
    Biophys J; 2017 Apr; 112(8):1539-1550. PubMed ID: 28445746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale Functional Analysis of CRP-Mediated Feed-Forward Loops.
    Yang CD; Huang HY; Shrestha S; Chen YH; Huang HD; Tseng CP
    Int J Mol Sci; 2018 Aug; 19(8):. PubMed ID: 30096859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination logic of the sensing machinery in the transcriptional regulatory network of Escherichia coli.
    Janga SC; Salgado H; Martínez-Antonio A; Collado-Vides J
    Nucleic Acids Res; 2007; 35(20):6963-72. PubMed ID: 17933780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases.
    Zhang HM; Kuang S; Xiong X; Gao T; Liu C; Guo AY
    Brief Bioinform; 2015 Jan; 16(1):45-58. PubMed ID: 24307685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring the regulatory interaction models of transcription factors in transcriptional regulatory networks.
    Awad S; Panchy N; Ng SK; Chen J
    J Bioinform Comput Biol; 2012 Oct; 10(5):1250012. PubMed ID: 22849367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global transcriptional regulatory network for
    Fang X; Sastry A; Mih N; Kim D; Tan J; Yurkovich JT; Lloyd CJ; Gao Y; Yang L; Palsson BO
    Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10286-10291. PubMed ID: 28874552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feed-forward regulation adaptively evolves via dynamics rather than topology when there is intrinsic noise.
    Xiong K; Lancaster AK; Siegal ML; Masel J
    Nat Commun; 2019 Jun; 10(1):2418. PubMed ID: 31160574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Hypoxiamir-Gene Regulatory Network Identifies Critical MiRNAs Influencing Cell-Cycle Regulation Under Hypoxic Conditions.
    Gupta A; Ragumani S; Sharma YK; Ahmad Y; Khurana P
    Microrna; 2019; 8(3):223-236. PubMed ID: 30806334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrated approach to reconstructing genome-scale transcriptional regulatory networks.
    Imam S; Noguera DR; Donohue TJ
    PLoS Comput Biol; 2015 Feb; 11(2):e1004103. PubMed ID: 25723545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spatial Organization of Bacterial Transcriptional Regulatory Networks.
    Tian L; Liu T; Hua KJ; Hu XP; Ma BG
    Microorganisms; 2022 Nov; 10(12):. PubMed ID: 36557619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.