These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 32541843)

  • 1. Experimental exchange of grins between quantum Cheshire cats.
    Liu ZH; Pan WW; Xu XY; Yang M; Zhou J; Luo ZY; Sun K; Chen JL; Xu JS; Li CF; Guo GC
    Nat Commun; 2020 Jun; 11(1):3006. PubMed ID: 32541843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental demonstration of separating the wave‒particle duality of a single photon with the quantum Cheshire cat.
    Li JK; Sun K; Wang Y; Hao ZY; Liu ZH; Zhou J; Fan XY; Chen JL; Xu JS; Li CF; Guo GC
    Light Sci Appl; 2023 Jan; 12(1):18. PubMed ID: 36599829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation of a quantum Cheshire Cat in a matter-wave interferometer experiment.
    Denkmayr T; Geppert H; Sponar S; Lemmel H; Matzkin A; Tollaksen J; Hasegawa Y
    Nat Commun; 2014 Jul; 5():4492. PubMed ID: 25072171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamical quantum Cheshire Cat effect and implications for counterfactual communication.
    Aharonov Y; Cohen E; Popescu S
    Nat Commun; 2021 Aug; 12(1):4770. PubMed ID: 34362884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum causality emerging in a delayed-choice quantum Cheshire Cat experiment with neutrons.
    Wagner R; Kersten W; Lemmel H; Sponar S; Hasegawa Y
    Sci Rep; 2023 Mar; 13(1):3865. PubMed ID: 36890148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of a classical Cheshire cat in an optical interferometer.
    Atherton DP; Ranjit G; Geraci AA; Weinstein JD
    Opt Lett; 2015 Mar; 40(6):879-81. PubMed ID: 25768136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental Optimal Orienteering via Parallel and Antiparallel Spins.
    Tang JF; Hou Z; Shang J; Zhu H; Xiang GY; Li CF; Guo GC
    Phys Rev Lett; 2020 Feb; 124(6):060502. PubMed ID: 32109089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulating Dynamic Quantum Phase Transitions in Photonic Quantum Walks.
    Wang K; Qiu X; Xiao L; Zhan X; Bian Z; Yi W; Xue P
    Phys Rev Lett; 2019 Jan; 122(2):020501. PubMed ID: 30720294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
    Yang W; Ma WL; Liu RB
    Rep Prog Phys; 2017 Jan; 80(1):016001. PubMed ID: 27811398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Order-Invariant Two-Photon Quantum Correlations in PT-Symmetric Interferometers.
    Wolterink TAW; Heinrich M; Scheel S; Szameit A
    ACS Photonics; 2023 Oct; 10(10):3451-3457. PubMed ID: 37869557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum reality with negative-mass particles.
    Waegell M; Cohen E; Elitzur A; Tollaksen J; Aharonov Y
    Proc Natl Acad Sci U S A; 2023 Aug; 120(32):e2018437120. PubMed ID: 37523558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ramsey Interference with Single Photons.
    Clemmen S; Farsi A; Ramelow S; Gaeta AL
    Phys Rev Lett; 2016 Nov; 117(22):223601. PubMed ID: 27925713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental optimal generation of hybrid entangled states in photonic quantum walks.
    Tao SJ; Wang QQ; Chen Z; Pan WW; Yu S; Chen G; Xu XY; Han YJ; Li CF; Guo GC
    Opt Lett; 2021 Apr; 46(8):1868-1871. PubMed ID: 33857091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental realization of sequential weak measurements of non-commuting Pauli observables.
    Chen JS; Hu MJ; Hu XM; Liu BH; Huang YF; Li CF; Guo CG; Zhang YS
    Opt Express; 2019 Mar; 27(5):6089-6097. PubMed ID: 30876202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Implementation of Efficient Quantum Pseudorandomness on a 12-Spin System.
    Li J; Luo Z; Xin T; Wang H; Kribs D; Lu D; Zeng B; Laflamme R
    Phys Rev Lett; 2019 Jul; 123(3):030502. PubMed ID: 31386459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photonic Implementation of Quantum Information Masking.
    Liu ZH; Liang XB; Sun K; Li Q; Meng Y; Yang M; Li B; Chen JL; Xu JS; Li CF; Guo GC
    Phys Rev Lett; 2021 Apr; 126(17):170505. PubMed ID: 33988432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of optical 'Schrödinger cats' from photon number states.
    Ourjoumtsev A; Jeong H; Tualle-Brouri R; Grangier P
    Nature; 2007 Aug; 448(7155):784-6. PubMed ID: 17700695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution of superluminal signalling in non-perturbative cavity quantum electrodynamics.
    Sánchez Muñoz C; Nori F; De Liberato S
    Nat Commun; 2018 May; 9(1):1924. PubMed ID: 29765054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental demonstration of quantum state expansion in a cluster of dipolar-coupled nuclear spins.
    Lee JS; Khitrin AK
    Phys Rev Lett; 2005 Apr; 94(15):150504. PubMed ID: 15904128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.