These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32541891)

  • 21. Co-Co
    Hu X; Min X; Li X; Si M; Liu L; Zheng J; Yang W; Zhao F
    J Colloid Interface Sci; 2022 Jun; 616():389-400. PubMed ID: 35228044
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced electrochemical and capacitive deionization performance of metal organic framework/holey graphene composite electrodes.
    Feng J; Liu L; Meng Q
    J Colloid Interface Sci; 2021 Jan; 582(Pt B):447-458. PubMed ID: 32896674
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water.
    Yin H; Zhao S; Wan J; Tang H; Chang L; He L; Zhao H; Gao Y; Tang Z
    Adv Mater; 2013 Nov; 25(43):6270-6. PubMed ID: 23963808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling Superior Sodium Capture for Efficient Water Desalination by a Tubular Polyaniline Decorated with Prussian Blue Nanocrystals.
    Shi W; Liu X; Deng T; Huang S; Ding M; Miao X; Zhu C; Zhu Y; Liu W; Wu F; Gao C; Yang SW; Yang HY; Shen J; Cao X
    Adv Mater; 2020 Aug; 32(33):e1907404. PubMed ID: 32656808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cu-based MOF-derived architecture with Cu/Cu
    Zhu G; Chen L; Lu T; Zhang L; Hossain MSA; Amin MA; Yamauchi Y; Li Y; Xu X; Pan L
    Environ Res; 2022 Jul; 210():112909. PubMed ID: 35157915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Na
    Xing S; Cheng Y; Yu F; Ma J
    J Colloid Interface Sci; 2021 Sep; 598():511-518. PubMed ID: 33934016
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Facile synthesis of novel graphene sponge for high performance capacitive deionization.
    Xu X; Pan L; Liu Y; Lu T; Sun Z; Chua DH
    Sci Rep; 2015 Feb; 5():8458. PubMed ID: 25675835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chitosan-based activated carbon as economic and efficient sustainable material for capacitive deionization of low salinity water.
    Wu Q; Liang D; Ma X; Lu S; Xiang Y
    RSC Adv; 2019 Aug; 9(46):26676-26684. PubMed ID: 35528572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Free-standing flexible film as a binder-free electrode for an efficient hybrid deionization system.
    Sriramulu D; Yang HY
    Nanoscale; 2019 Mar; 11(13):5896-5908. PubMed ID: 30874713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pseudocapacitive Coating for Effective Capacitive Deionization.
    Li M; Park HG
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2442-2450. PubMed ID: 29272105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel graphene-like electrodes for capacitive deionization.
    Li H; Zou L; Pan L; Sun Z
    Environ Sci Technol; 2010 Nov; 44(22):8692-7. PubMed ID: 20964326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Charge and Potential Balancing for Optimized Capacitive Deionization Using Lignin-Derived, Low-Cost Activated Carbon Electrodes.
    Zornitta RL; Srimuk P; Lee J; Krüner B; Aslan M; Ruotolo LAM; Presser V
    ChemSusChem; 2018 Jul; 11(13):2101-2113. PubMed ID: 29710382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced Electrosorption Ability of Carbon Nanocages as an Advanced Electrode Material for Capacitive Deionization.
    Zang X; Xue Y; Ni W; Li C; Hu L; Zhang A; Yang Z; Yan YM
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2180-2190. PubMed ID: 31868351
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printed electrodes for efficient membrane capacitive deionization.
    Vafakhah S; Sim GJ; Saeedikhani M; Li X; Valdivia Y Alvarado P; Yang HY
    Nanoscale Adv; 2019 Dec; 1(12):4804-4811. PubMed ID: 36133144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface-treated carbon electrodes with modified potential of zero charge for capacitive deionization.
    Wu T; Wang G; Zhan F; Dong Q; Ren Q; Wang J; Qiu J
    Water Res; 2016 Apr; 93():30-37. PubMed ID: 26878480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow-Electrode Capacitive Deionization Using an Aqueous Electrolyte with a High Salt Concentration.
    Yang S; Choi J; Yeo JG; Jeon SI; Park HR; Kim DK
    Environ Sci Technol; 2016 Jun; 50(11):5892-9. PubMed ID: 27162028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel mesoporous Co
    Delfani E; Khodabakhshi A; Habibzadeh S; Naji L; Ganjali MR
    RSC Adv; 2021 Dec; 12(2):907-920. PubMed ID: 35425095
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization.
    Zhu Y; Zhang G; Xu C; Wang L
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29706-29716. PubMed ID: 32502337
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced Hybrid Capacitive Deionization Performance by Sodium Titanium Phosphate/Reduced Porous Graphene Oxide Composites.
    Han C; Meng Q; Cao B; Tian G
    ACS Omega; 2019 Jul; 4(7):11455-11463. PubMed ID: 31460250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capacitive Deionization of Saline Water by Using MoS
    Han J; Yan T; Shen J; Shi L; Zhang J; Zhang D
    Environ Sci Technol; 2019 Nov; 53(21):12668-12676. PubMed ID: 31532191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.