These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 32541932)
1. Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics. Baumgartner M; Hartmann F; Drack M; Preninger D; Wirthl D; Gerstmayr R; Lehner L; Mao G; Pruckner R; Demchyshyn S; Reiter L; Strobel M; Stockinger T; Schiller D; Kimeswenger S; Greibich F; Buchberger G; Bradt E; Hild S; Bauer S; Kaltenbrunner M Nat Mater; 2020 Oct; 19(10):1102-1109. PubMed ID: 32541932 [TBL] [Abstract][Full Text] [Related]
2. Stretchable, Healable, and Degradable Soft Ionic Microdevices Based on Multifunctional Soaking-Toughened Dual-Dynamic-Network Organohydrogel Electrolytes. Fang L; Zhang J; Wang W; Zhang Y; Chen F; Zhou J; Chen F; Li R; Zhou X; Xie Z ACS Appl Mater Interfaces; 2020 Dec; 12(50):56393-56402. PubMed ID: 33274913 [TBL] [Abstract][Full Text] [Related]
3. A self-healing, recyclable, and degradable fire-retardant gelatin-based biogel coating for green buildings. Zhang L; Huang Y; Sun P; Hai Y; Jiang S Soft Matter; 2021 May; 17(20):5231-5239. PubMed ID: 33949608 [TBL] [Abstract][Full Text] [Related]
4. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Heiden A; Preninger D; Lehner L; Baumgartner M; Drack M; Woritzka E; Schiller D; Gerstmayr R; Hartmann F; Kaltenbrunner M Sci Robot; 2022 Feb; 7(63):eabk2119. PubMed ID: 35108023 [TBL] [Abstract][Full Text] [Related]
5. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Han WB; Ko GJ; Lee KG; Kim D; Lee JH; Yang SM; Kim DJ; Shin JW; Jang TM; Han S; Zhou H; Kang H; Lim JH; Rajaram K; Cheng H; Park YD; Kim SH; Hwang SW Nat Commun; 2023 Apr; 14(1):2263. PubMed ID: 37081012 [TBL] [Abstract][Full Text] [Related]
6. Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Hao XP; Zhang CW; Zhang XN; Hou LX; Hu J; Dickey MD; Zheng Q; Wu ZL Small; 2022 Jun; 18(23):e2201643. PubMed ID: 35532205 [TBL] [Abstract][Full Text] [Related]
7. Skin-Inspired Electronics: An Emerging Paradigm. Wang S; Oh JY; Xu J; Tran H; Bao Z Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379 [TBL] [Abstract][Full Text] [Related]
8. Robust antigen-specific tuning of the nanoscale barrier properties of biogels using matrix-associating IgG and IgM antibodies. Schiller JL; Marvin A; McCallen JD; Lai SK Acta Biomater; 2019 Apr; 89():95-103. PubMed ID: 30878451 [TBL] [Abstract][Full Text] [Related]
9. Progress and Roadmap for Intelligent Self-Healing Materials in Autonomous Robotics. Tan YJ; Susanto GJ; Anwar Ali HP; Tee BCK Adv Mater; 2021 May; 33(19):e2002800. PubMed ID: 33346389 [TBL] [Abstract][Full Text] [Related]
10. Fatigue-free artificial ionic skin toughened by self-healable elastic nanomesh. Wang J; Wu B; Wei P; Sun S; Wu P Nat Commun; 2022 Jul; 13(1):4411. PubMed ID: 35906238 [TBL] [Abstract][Full Text] [Related]
11. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Markvicka EJ; Bartlett MD; Huang X; Majidi C Nat Mater; 2018 Jul; 17(7):618-624. PubMed ID: 29784995 [TBL] [Abstract][Full Text] [Related]
12. A transparent, self-healing and high-κ dielectric for low-field-emission stretchable optoelectronics. Tan YJ; Godaba H; Chen G; Tan STM; Wan G; Li G; Lee PM; Cai Y; Li S; Shepherd RF; Ho JS; Tee BCK Nat Mater; 2020 Feb; 19(2):182-188. PubMed ID: 31844282 [TBL] [Abstract][Full Text] [Related]
13. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Lee Y; Lee TW Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916 [TBL] [Abstract][Full Text] [Related]
14. Becoming Sustainable, The New Frontier in Soft Robotics. Hartmann F; Baumgartner M; Kaltenbrunner M Adv Mater; 2021 May; 33(19):e2004413. PubMed ID: 33336520 [TBL] [Abstract][Full Text] [Related]
16. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Wang S; Xu J; Wang W; Wang GN; Rastak R; Molina-Lopez F; Chung JW; Niu S; Feig VR; Lopez J; Lei T; Kwon SK; Kim Y; Foudeh AM; Ehrlich A; Gasperini A; Yun Y; Murmann B; Tok JB; Bao Z Nature; 2018 Mar; 555(7694):83-88. PubMed ID: 29466334 [TBL] [Abstract][Full Text] [Related]
17. A Biodegradable, Stretchable, Healable, and Self-Powered Optoelectronic Synapse Based on Ionic Gelatins for Neuromorphic Vision System. Wang K; Wu J; Wang M; Zhang F; Li X; Xu M; Zhu D; Han J; Liu J; Liu Z; Huang W Small; 2024 Nov; 20(44):e2404566. PubMed ID: 38963158 [TBL] [Abstract][Full Text] [Related]
18. Laser-Enabled Processing of Stretchable Electronics on a Hydrolytically Degradable Hydrogel. Rahimi R; Shams Es-Haghi S; Chittiboyina S; Mutlu Z; Lelièvre SA; Cakmak M; Ziaie B Adv Healthc Mater; 2018 Aug; 7(16):e1800231. PubMed ID: 29947042 [TBL] [Abstract][Full Text] [Related]
19. Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. Wang C; Zhang M; Xia K; Gong X; Wang H; Yin Z; Guan B; Zhang Y ACS Appl Mater Interfaces; 2017 Apr; 9(15):13331-13338. PubMed ID: 28345872 [TBL] [Abstract][Full Text] [Related]
20. Instantaneous and Repeatable Self-Healing of Fully Metallic Electrodes at Ambient Conditions. Park YG; Kim H; Park SY; Kim JY; Park JU ACS Appl Mater Interfaces; 2019 Nov; 11(44):41497-41505. PubMed ID: 31612704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]