These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 32541943)

  • 1. Radiative Auger process in the single-photon limit.
    Löbl MC; Spinnler C; Javadi A; Zhai L; Nguyen GN; Ritzmann J; Midolo L; Lodahl P; Wieck AD; Ludwig A; Warburton RJ
    Nat Nanotechnol; 2020 Jul; 15(7):558-562. PubMed ID: 32541943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically driving the radiative Auger transition.
    Spinnler C; Zhai L; Nguyen GN; Ritzmann J; Wieck AD; Ludwig A; Javadi A; Reiter DE; Machnikowski P; Warburton RJ; Löbl MC
    Nat Commun; 2021 Nov; 12(1):6575. PubMed ID: 34772948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-Time Detection of Single Auger Recombination Events in a Self-Assembled Quantum Dot.
    Lochner P; Kurzmann A; Kerski J; Stegmann P; König J; Wieck AD; Ludwig A; Lorke A; Geller M
    Nano Lett; 2020 Mar; 20(3):1631-1636. PubMed ID: 32023065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superposition Principle in Auger Recombination of Charged and Neutral Multicarrier States in Semiconductor Quantum Dots.
    Wu K; Lim J; Klimov VI
    ACS Nano; 2017 Aug; 11(8):8437-8447. PubMed ID: 28723072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.
    Makarov NS; Guo S; Isaienko O; Liu W; Robel I; Klimov VI
    Nano Lett; 2016 Apr; 16(4):2349-62. PubMed ID: 26882294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Interfacial Alloying versus "Volume Scaling" on Auger Recombination in Compositionally Graded Semiconductor Quantum Dots.
    Park YS; Lim J; Makarov NS; Klimov VI
    Nano Lett; 2017 Sep; 17(9):5607-5613. PubMed ID: 28776995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes.
    Bae WK; Park YS; Lim J; Lee D; Padilha LA; McDaniel H; Robel I; Lee C; Pietryga JM; Klimov VI
    Nat Commun; 2013; 4():2661. PubMed ID: 24157692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.
    Rabouw FT; Vaxenburg R; Bakulin AA; van Dijk-Moes RJ; Bakker HJ; Rodina A; Lifshitz E; L Efros A; Koenderink AF; Vanmaekelbergh D
    ACS Nano; 2015 Oct; 9(10):10366-76. PubMed ID: 26389562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Auger recombination in colloidal quantum dots via dielectric screening.
    Hou X; Kang J; Qin H; Chen X; Ma J; Zhou J; Chen L; Wang L; Wang LW; Peng X
    Nat Commun; 2019 Apr; 10(1):1750. PubMed ID: 30988287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auger Recombination in Self-Assembled Quantum Dots: Quenching and Broadening of the Charged Exciton Transition.
    Kurzmann A; Ludwig A; Wieck AD; Lorke A; Geller M
    Nano Lett; 2016 May; 16(5):3367-72. PubMed ID: 27087053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-Hole Correlations Govern Auger Recombination in Nanostructures.
    Philbin JP; Rabani E
    Nano Lett; 2018 Dec; 18(12):7889-7895. PubMed ID: 30403875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of ligands in determining the exciton relaxation dynamics in semiconductor quantum dots.
    Peterson MD; Cass LC; Harris RD; Edme K; Sung K; Weiss EA
    Annu Rev Phys Chem; 2014; 65():317-39. PubMed ID: 24364916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridization of electronic states in quantum dots through photon emission.
    Karrai K; Warburton RJ; Schulhauser C; Högele A; Urbaszek B; McGhee EJ; Govorov AO; Garcia JM; Gerardot BD; Petroff PM
    Nature; 2004 Jan; 427(6970):135-8. PubMed ID: 14712271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit.
    Schaller RD; Pietryga JM; Klimov VI
    Nano Lett; 2007 Nov; 7(11):3469-76. PubMed ID: 17967043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lifetime blinking in nonblinking nanocrystal quantum dots.
    Galland C; Ghosh Y; Steinbrück A; Hollingsworth JA; Htoon H; Klimov VI
    Nat Commun; 2012 Jun; 3():908. PubMed ID: 22713750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biexciton Auger Recombination in CdSe/CdS Core/Shell Semiconductor Nanocrystals.
    Vaxenburg R; Rodina A; Lifshitz E; L Efros A
    Nano Lett; 2016 Apr; 16(4):2503-11. PubMed ID: 26950398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.