These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32541944)

  • 1. Melting of a skyrmion lattice to a skyrmion liquid via a hexatic phase.
    Huang P; Schönenberger T; Cantoni M; Heinen L; Magrez A; Rosch A; Carbone F; Rønnow HM
    Nat Nanotechnol; 2020 Sep; 15(9):761-767. PubMed ID: 32541944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal Hysteresis and Ordering Behavior of Magnetic Skyrmion Lattices.
    McCray ARC; Li Y; Basnet R; Pandey K; Hu J; Phelan DP; Ma X; Petford-Long AK; Phatak C
    Nano Lett; 2022 Oct; 22(19):7804-7810. PubMed ID: 36129969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filming the formation and fluctuation of skyrmion domains by cryo-Lorentz transmission electron microscopy.
    Rajeswari J; Huang P; Mancini GF; Murooka Y; Latychevskaia T; McGrouther D; Cantoni M; Baldini E; White JS; Magrez A; Giamarchi T; Rønnow HM; Carbone F
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14212-7. PubMed ID: 26578765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting of quasi-two-dimensional crystalline Pb supported on liquid Ga.
    Li D; Rice SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 1):041506. PubMed ID: 16383384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting and freezing of a skyrmion lattice.
    Garanin DA; Soriano JF; Chudnovsky EM
    J Phys Condens Matter; 2024 Aug; 36(47):. PubMed ID: 39142350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric phase analysis of magnetic skyrmion lattices in Lorentz transmission electron microscopy images.
    Denneulin T; Kovács A; Boltje R; Kiselev NS; Dunin-Borkowski RE
    Sci Rep; 2024 May; 14(1):12286. PubMed ID: 38811716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting of the Vortex Lattice through Intermediate Hexatic Fluid in an a-MoGe Thin Film.
    Roy I; Dutta S; Roy Choudhury AN; Basistha S; Maccari I; Mandal S; Jesudasan J; Bagwe V; Castellani C; Benfatto L; Raychaudhuri P
    Phys Rev Lett; 2019 Feb; 122(4):047001. PubMed ID: 30768342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2D melting criteria in a colloidal system.
    Dillmann P; Maret G; Keim P
    J Phys Condens Matter; 2012 Nov; 24(46):464118. PubMed ID: 23114280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological transitions among skyrmion- and hedgehog-lattice states in cubic chiral magnets.
    Fujishiro Y; Kanazawa N; Nakajima T; Yu XZ; Ohishi K; Kawamura Y; Kakurai K; Arima T; Mitamura H; Miyake A; Akiba K; Tokunaga M; Matsuo A; Kindo K; Koretsune T; Arita R; Tokura Y
    Nat Commun; 2019 Mar; 10(1):1059. PubMed ID: 30837479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melting scenarios of two-dimensional Hertzian spheres with a single triangular lattice.
    Tsiok EN; Gaiduk EA; Fomin YD; Ryzhov VN
    Soft Matter; 2020 Apr; 16(16):3962-3972. PubMed ID: 32249869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective antiskyrmion-mediated phase transition and defect-induced melting in chiral magnetic films.
    Pierobon L; Moutafis C; Li Y; Löffler JF; Charilaou M
    Sci Rep; 2018 Nov; 8(1):16675. PubMed ID: 30420698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions.
    Kapfer SC; Krauth W
    Phys Rev Lett; 2015 Jan; 114(3):035702. PubMed ID: 25659008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-space observation of a two-dimensional skyrmion crystal.
    Yu XZ; Onose Y; Kanazawa N; Park JH; Han JH; Matsui Y; Nagaosa N; Tokura Y
    Nature; 2010 Jun; 465(7300):901-4. PubMed ID: 20559382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple-step melting in two-dimensional hexatic liquid-crystal films.
    Chou CF; Jin AJ; Hui SW; Huang CC; Ho JT
    Science; 1998 May; 280(5368):1424-6. PubMed ID: 9603729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct imaging of magnetic field-driven transitions of skyrmion cluster states in FeGe nanodisks.
    Zhao X; Jin C; Wang C; Du H; Zang J; Tian M; Che R; Zhang Y
    Proc Natl Acad Sci U S A; 2016 May; 113(18):4918-23. PubMed ID: 27051067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melting and solid-solid transitions of two-dimensional crystals composed of Janus spheres.
    Huang T; Han Y; Chen Y
    Soft Matter; 2020 Mar; 16(12):3015-3021. PubMed ID: 32129423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random pinning changes the melting scenario of a two-dimensional core-softened potential system.
    Tsiok EN; Dudalov DE; Fomin YD; Ryzhov VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032110. PubMed ID: 26465429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle-size dependent structural transformation of skyrmion lattice.
    Takagi R; Yamasaki Y; Yokouchi T; Ukleev V; Yokoyama Y; Nakao H; Arima T; Tokura Y; Seki S
    Nat Commun; 2020 Nov; 11(1):5685. PubMed ID: 33177528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of Skyrmion and Skyrmion Crystal Formation from the Conical Phase.
    Kim TH; Zhao H; Xu B; Jensen BA; King AH; Kramer MJ; Nan C; Ke L; Zhou L
    Nano Lett; 2020 Jul; 20(7):4731-4738. PubMed ID: 32202799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Direct-Write Skyrmion Nanolithography.
    Ognev AV; Kolesnikov AG; Kim YJ; Cha IH; Sadovnikov AV; Nikitov SA; Soldatov IV; Talapatra A; Mohanty J; Mruczkiewicz M; Ge Y; Kerber N; Dittrich F; Virnau P; Kläui M; Kim YK; Samardak AS
    ACS Nano; 2020 Nov; 14(11):14960-14970. PubMed ID: 33152236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.