These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 32542330)
1. The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases. Kentache T; Thabault L; Peracchi A; Frédérick R; Bommer GT; Van Schaftingen E Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32542330 [TBL] [Abstract][Full Text] [Related]
2. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism. Horne CR; Kind L; Davies JS; Dobson RCJ Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432 [TBL] [Abstract][Full Text] [Related]
3. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria. Bell A; Severi E; Lee M; Monaco S; Latousakis D; Angulo J; Thomas GH; Naismith JH; Juge N J Biol Chem; 2020 Oct; 295(40):13724-13736. PubMed ID: 32669363 [TBL] [Abstract][Full Text] [Related]
4. The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate. Kentache T; Thabault L; Deumer G; Haufroid V; Frédérick R; Linster CL; Peracchi A; Veiga-da-Cunha M; Bommer GT; Van Schaftingen E J Biol Chem; 2021; 296():100699. PubMed ID: 33895133 [TBL] [Abstract][Full Text] [Related]
5. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR. Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030 [TBL] [Abstract][Full Text] [Related]
7. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR. Kalivoda KA; Steenbergen SM; Vimr ER J Bacteriol; 2013 Oct; 195(20):4689-701. PubMed ID: 23935044 [TBL] [Abstract][Full Text] [Related]
8. Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria. Wu Y; Bell A; Thomas GH; Bolam DN; Sargent F; Juge N; Palmer T; Severi E Microbiology (Reading); 2024 Mar; 170(3):. PubMed ID: 38488830 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and evaluation of C-9 modified N-acetylneuraminic acid derivatives as substrates for N-acetylneuraminic acid aldolase. Kiefelt MJ; Wilson JC; Bennett S; Gredley M; von Itzstein M Bioorg Med Chem; 2000 Mar; 8(3):657-64. PubMed ID: 10732983 [TBL] [Abstract][Full Text] [Related]
10. De-O-Acetylation of mucin-derived sialic acids by recombinant NanS-p esterases of Escherichia coli O157:H7 strain EDL933. Feuerbaum S; Saile N; Pohlentz G; Müthing J; Schmidt H Int J Med Microbiol; 2018 Dec; 308(8):1113-1120. PubMed ID: 30340996 [TBL] [Abstract][Full Text] [Related]
11. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR. Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as substrates. Nakata D; Münster AK; Gerardy-Schahn R; Aoki N; Matsuda T; Kitajima K Glycobiology; 2001 Aug; 11(8):685-92. PubMed ID: 11479279 [TBL] [Abstract][Full Text] [Related]
13. Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis. Ji W; Sun W; Feng J; Song T; Zhang D; Ouyang P; Gu Z; Xie J Sci Rep; 2015 Mar; 5():9341. PubMed ID: 25799411 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a novel N-acetylneuraminate lyase from Staphylococcus carnosus TM300 and its application to N-acetylneuraminic acid production. García García MI; Sola Carvajal A; García Carmona F; Sánchez Ferrer Á J Agric Food Chem; 2012 Aug; 60(30):7450-6. PubMed ID: 22803763 [TBL] [Abstract][Full Text] [Related]
15. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions. Klermund L; Riederer A; Hunger A; Castiglione K Enzyme Microb Technol; 2016 Jun; 87-88():70-8. PubMed ID: 27178797 [TBL] [Abstract][Full Text] [Related]
16. YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. Steenbergen SM; Jirik JL; Vimr ER J Bacteriol; 2009 Nov; 191(22):7134-9. PubMed ID: 19749043 [TBL] [Abstract][Full Text] [Related]
17. Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-D-glucosamine 2-epimerase and N-acetylneuraminate lyase. Maru I; Ohnishi J; Ohta Y; Tsukada Y Carbohydr Res; 1998 Feb; 306(4):575-8. PubMed ID: 9679278 [TBL] [Abstract][Full Text] [Related]
18. Sialic acid catabolism in Staphylococcus aureus. Olson ME; King JM; Yahr TL; Horswill AR J Bacteriol; 2013 Apr; 195(8):1779-88. PubMed ID: 23396916 [TBL] [Abstract][Full Text] [Related]
19. Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes. Paccalet T; Bardor M; Rihouey C; Delmas F; Chevalier C; D'Aoust MA; Faye L; Vézina L; Gomord V; Lerouge P Plant Biotechnol J; 2007 Jan; 5(1):16-25. PubMed ID: 17207253 [TBL] [Abstract][Full Text] [Related]
20. Elimination of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activity from human N-acetylneuraminic acid 9-phosphate synthase by a single mutation. Hao J; Vann WF; Hinderlich S; Sundaramoorthy M Biochem J; 2006 Jul; 397(1):195-201. PubMed ID: 16503877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]