BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 32542330)

  • 1. The putative Escherichia coli dehydrogenase YjhC metabolises two dehydrated forms of N-acetylneuraminate produced by some sialidases.
    Kentache T; Thabault L; Peracchi A; Frédérick R; Bommer GT; Van Schaftingen E
    Biosci Rep; 2020 Jun; 40(6):. PubMed ID: 32542330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the structure and function of Escherichia coli YjhC: An oxidoreductase involved in bacterial sialic acid metabolism.
    Horne CR; Kind L; Davies JS; Dobson RCJ
    Proteins; 2020 May; 88(5):654-668. PubMed ID: 31697432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria.
    Bell A; Severi E; Lee M; Monaco S; Latousakis D; Angulo J; Thomas GH; Naismith JH; Juge N
    J Biol Chem; 2020 Oct; 295(40):13724-13736. PubMed ID: 32669363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metalloprotein YhcH is an anomerase providing N-acetylneuraminate aldolase with the open form of its substrate.
    Kentache T; Thabault L; Deumer G; Haufroid V; Frédérick R; Linster CL; Peracchi A; Veiga-da-Cunha M; Bommer GT; Van Schaftingen E
    J Biol Chem; 2021; 296():100699. PubMed ID: 33895133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcription of Sialic Acid Catabolism Genes in Corynebacterium glutamicum Is Subject to Catabolite Repression and Control by the Transcriptional Repressor NanR.
    Uhde A; Brühl N; Goldbeck O; Matano C; Gurow O; Rückert C; Marin K; Wendisch VF; Krämer R; Seibold GM
    J Bacteriol; 2016 Aug; 198(16):2204-18. PubMed ID: 27274030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of NanR gene repression and allosteric induction of bacterial sialic acid metabolism.
    Horne CR; Venugopal H; Panjikar S; Wood DM; Henrickson A; Brookes E; North RA; Murphy JM; Friemann R; Griffin MDW; Ramm G; Demeler B; Dobson RCJ
    Nat Commun; 2021 Mar; 12(1):1988. PubMed ID: 33790291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of the Escherichia coli sialoregulon by transcriptional repressor NanR.
    Kalivoda KA; Steenbergen SM; Vimr ER
    J Bacteriol; 2013 Oct; 195(20):4689-701. PubMed ID: 23935044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of anhydro-sialic acid transporters from mucosa-associated bacteria.
    Wu Y; Bell A; Thomas GH; Bolam DN; Sargent F; Juge N; Palmer T; Severi E
    Microbiology (Reading); 2024 Mar; 170(3):. PubMed ID: 38488830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and evaluation of C-9 modified N-acetylneuraminic acid derivatives as substrates for N-acetylneuraminic acid aldolase.
    Kiefelt MJ; Wilson JC; Bennett S; Gredley M; von Itzstein M
    Bioorg Med Chem; 2000 Mar; 8(3):657-64. PubMed ID: 10732983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De-O-Acetylation of mucin-derived sialic acids by recombinant NanS-p esterases of Escherichia coli O157:H7 strain EDL933.
    Feuerbaum S; Saile N; Pohlentz G; Müthing J; Schmidt H
    Int J Med Microbiol; 2018 Dec; 308(8):1113-1120. PubMed ID: 30340996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR.
    Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M
    Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning of a unique CMP-sialic acid synthetase that effectively utilizes both deaminoneuraminic acid (KDN) and N-acetylneuraminic acid (Neu5Ac) as substrates.
    Nakata D; Münster AK; Gerardy-Schahn R; Aoki N; Matsuda T; Kitajima K
    Glycobiology; 2001 Aug; 11(8):685-92. PubMed ID: 11479279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a novel N-acetylneuraminic acid lyase favoring industrial N-acetylneuraminic acid synthesis.
    Ji W; Sun W; Feng J; Song T; Zhang D; Ouyang P; Gu Z; Xie J
    Sci Rep; 2015 Mar; 5():9341. PubMed ID: 25799411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a novel N-acetylneuraminate lyase from Staphylococcus carnosus TM300 and its application to N-acetylneuraminic acid production.
    García García MI; Sola Carvajal A; García Carmona F; Sánchez Ferrer Á
    J Agric Food Chem; 2012 Aug; 60(30):7450-6. PubMed ID: 22803763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein engineering of a bacterial N-acyl-d-glucosamine 2-epimerase for improved stability under process conditions.
    Klermund L; Riederer A; Hunger A; Castiglione K
    Enzyme Microb Technol; 2016 Jun; 87-88():70-8. PubMed ID: 27178797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid.
    Steenbergen SM; Jirik JL; Vimr ER
    J Bacteriol; 2009 Nov; 191(22):7134-9. PubMed ID: 19749043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and large-scale production of N-acetylneuraminic acid from N-acetyl-D-glucosamine and pyruvate using N-acyl-D-glucosamine 2-epimerase and N-acetylneuraminate lyase.
    Maru I; Ohnishi J; Ohta Y; Tsukada Y
    Carbohydr Res; 1998 Feb; 306(4):575-8. PubMed ID: 9679278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sialic acid catabolism in Staphylococcus aureus.
    Olson ME; King JM; Yahr TL; Horswill AR
    J Bacteriol; 2013 Apr; 195(8):1779-88. PubMed ID: 23396916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of a sialic acid synthesis pathway in transgenic plants by expression of bacterial Neu5Ac-synthesizing enzymes.
    Paccalet T; Bardor M; Rihouey C; Delmas F; Chevalier C; D'Aoust MA; Faye L; Vézina L; Gomord V; Lerouge P
    Plant Biotechnol J; 2007 Jan; 5(1):16-25. PubMed ID: 17207253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elimination of 2-keto-3-deoxy-D-glycero-D-galacto-nonulosonic acid 9-phosphate synthase activity from human N-acetylneuraminic acid 9-phosphate synthase by a single mutation.
    Hao J; Vann WF; Hinderlich S; Sundaramoorthy M
    Biochem J; 2006 Jul; 397(1):195-201. PubMed ID: 16503877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.