These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32542910)

  • 1. Quantifying Through-Space Substituent Effects.
    Burns RJ; Mati IK; Muchowska KB; Adam C; Cockroft SL
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16717-16724. PubMed ID: 32542910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding substituent effects in noncovalent interactions involving aromatic rings.
    Wheeler SE
    Acc Chem Res; 2013 Apr; 46(4):1029-38. PubMed ID: 22725832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substituent effects on aromatic interactions in water.
    Tobajas-Curiel G; Sun Q; Sanders JKM; Ballester P; Hunter CA
    Chem Sci; 2023 Jun; 14(23):6226-6236. PubMed ID: 37325132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing substituent effects in aryl-aryl interactions using stereoselective Diels-Alder cycloadditions.
    Wheeler SE; McNeil AJ; Müller P; Swager TM; Houk KN
    J Am Chem Soc; 2010 Mar; 132(10):3304-11. PubMed ID: 20158182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sigma Hole Potentials as Tools: Quantifying and Partitioning Substituent Effects.
    Donald KJ; Pham N; Ravichandran P
    J Phys Chem A; 2023 Dec; 127(48):10147-10158. PubMed ID: 38058158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct Through-Space Substituent-π Interactions in Noncovalent Arene-Fullerene Assemblies.
    Hashikawa Y; Murata Y
    Chem Asian J; 2024 Apr; 19(8):e202400075. PubMed ID: 38385611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Substituent cross-interaction effects on the electronic character of the C=N bridging group in substituted benzylidene anilines--models for molecular cores of mesogenic compounds. A 13C NMR study and comparison with theoretical results.
    Neuvonen H; Neuvonen K; Fülöp F
    J Org Chem; 2006 Apr; 71(8):3141-8. PubMed ID: 16599611
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of remote aryl substituents on the conformational equilibria of 2,2-diaryl-1,3-dioxanes: importance of electrostatic interactions.
    Bailey WF; Lambert KM; Wiberg KB; Mercado BQ
    J Org Chem; 2015 Apr; 80(8):4108-15. PubMed ID: 25803722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent Modulation of Aromatic Substituent Effects in Molecular Balances Controlled by CH-π Interactions.
    Emenike BU; Spinelle RA; Rosario A; Shinn DW; Yoo B
    J Phys Chem A; 2018 Feb; 122(4):909-915. PubMed ID: 29332380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular cage encapsulation as a versatile tool for the experimental quantification of aromatic stacking interactions.
    Bravin C; Licini G; Hunter CA; Zonta C
    Chem Sci; 2019 Feb; 10(5):1466-1471. PubMed ID: 30809364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification and classification of substituent effects in organic chemistry: a theoretical molecular electrostatic potential study.
    Remya GS; Suresh CH
    Phys Chem Chem Phys; 2016 Jul; 18(30):20615-26. PubMed ID: 27412764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic CH-π Interactions Can Override Fluorine Gauche Effects To Exert Conformational Control.
    Emenike BU; Farshadmand A; Zeller M; Roman AJ; Sevimler A; Shinn DW
    Chemistry; 2023 Jan; 29(6):e202203139. PubMed ID: 36286329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substituent Effects on Menshutkin-Type Reactions in the Gas Phase and Solutions: Theoretical Approach from the Orbital Interaction View.
    Jiang L; Orimoto Y; Aoki Y
    J Chem Theory Comput; 2013 Sep; 9(9):4035-45. PubMed ID: 26592399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fullerene-Based Molecular Torsion Balance for Investigating Noncovalent Interactions at the C
    Yamada M; Narita H; Maeda Y
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16133-16140. PubMed ID: 32458522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Substituent Effect on the Radical Scavenging Activity of Apigenin.
    Zheng YZ; Chen DF; Deng G; Guo R
    Molecules; 2018 Aug; 23(8):. PubMed ID: 30103379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CCSD(T) level interaction energy for halogen bond between pyridine and substituted iodobenzenes: origin and additivity of substituent effects.
    Tsuzuki S; Uchimaru T; Wakisaka A; Ono T; Sonoda T
    Phys Chem Chem Phys; 2013 Apr; 15(16):6088-96. PubMed ID: 23503841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additivity of substituent effects in aromatic stacking interactions.
    Hwang J; Li P; Carroll WR; Smith MD; Pellechia PJ; Shimizu KD
    J Am Chem Soc; 2014 Oct; 136(40):14060-7. PubMed ID: 25238590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stress tensor and QTAIM perspective on the substituent effects of biphenyl subjected to torsion.
    Jiajun D; Maza JR; Xu Y; Xu T; Momen R; Kirk SR; Jenkins S
    J Comput Chem; 2016 Oct; 37(28):2508-17. PubMed ID: 27546220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superoxide radical-mediated photocatalytic oxidation of phenolic compounds over Ag⁺/TiO₂: Influence of electron donating and withdrawing substituents.
    Xiao J; Xie Y; Han Q; Cao H; Wang Y; Nawaz F; Duan F
    J Hazard Mater; 2016 Mar; 304():126-33. PubMed ID: 26547621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of substituent effect on O-C bond dissociation enthalpy of methoxy group in meta- and para-substituted anisoles.
    Biela M; Kleinová A; Uhliar M; Klein E
    J Mol Graph Model; 2023 Jul; 122():108465. PubMed ID: 37062128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.