These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 32543095)

  • 1. Convergent Evolution of Fungal Cysteine Dioxygenases.
    Flückger S; Igareta NV; Seebeck FP
    Chembiochem; 2020 Nov; 21(21):3082-3086. PubMed ID: 32543095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiol dioxygenases: unique families of cupin proteins.
    Stipanuk MH; Simmons CR; Karplus PA; Dominy JE
    Amino Acids; 2011 Jun; 41(1):91-102. PubMed ID: 20195658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzyme-Catalyzed Oxidative Degradation of Ergothioneine.
    Nalivaiko EY; Vasseur CM; Seebeck FP
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202318445. PubMed ID: 38095354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of Arg- and Gln-type bacterial cysteine dioxygenase homologs.
    Driggers CM; Hartman SJ; Karplus PA
    Protein Sci; 2015 Jan; 24(1):154-61. PubMed ID: 25307852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifting redox states of the iron center partitions CDO between crosslink formation or cysteine oxidation.
    Njeri CW; Ellis HR
    Arch Biochem Biophys; 2014 Sep; 558():61-9. PubMed ID: 24929188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Why do cysteine dioxygenase enzymes contain a 3-His ligand motif rather than a 2His/1Asp motif like most nonheme dioxygenases?
    de Visser SP; Straganz GD
    J Phys Chem A; 2009 Mar; 113(9):1835-46. PubMed ID: 19199799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery and Characterization of the Metallopterin-Dependent Ergothioneine Synthase from
    Beliaeva MA; Seebeck FP
    JACS Au; 2022 Sep; 2(9):2098-2107. PubMed ID: 36186560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding human thiol dioxygenase enzymes: structure to function, and biology to pathology.
    Sarkar B; Kulharia M; Mantha AK
    Int J Exp Pathol; 2017 Apr; 98(2):52-66. PubMed ID: 28439920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 3-His Metal Coordination Site Promotes the Coupling of Oxygen Activation to Cysteine Oxidation in Cysteine Dioxygenase.
    Forbes DL; Meneely KM; Chilton AS; Lamb AL; Ellis HR
    Biochemistry; 2020 Jun; 59(21):2022-2031. PubMed ID: 32368901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and characterization of bacterial cysteine dioxygenases: a new route of cysteine degradation for eubacteria.
    Dominy JE; Simmons CR; Karplus PA; Gehring AM; Stipanuk MH
    J Bacteriol; 2006 Aug; 188(15):5561-9. PubMed ID: 16855246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenocysteine as a Substrate, an Inhibitor and a Mechanistic Probe for Bacterial and Fungal Iron-Dependent Sulfoxide Synthases.
    Goncharenko KV; Flückiger S; Liao C; Lim D; Stampfli AR; Seebeck FP
    Chemistry; 2020 Jan; 26(6):1328-1334. PubMed ID: 31545545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation Mechanism of Cofactor Cys-Tyr in the Cysteine Dioxygenases (CDO and F
    Wang Y; Yan L; Li X; Zhang S; Wei J; Liu Y
    Inorg Chem; 2021 Jun; 60(11):7844-7856. PubMed ID: 34008401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probes of the catalytic site of cysteine dioxygenase.
    Chai SC; Bruyere JR; Maroney MJ
    J Biol Chem; 2006 Jun; 281(23):15774-9. PubMed ID: 16611641
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the nitrosyl adduct of substrate-bound mouse cysteine dioxygenase by electron paramagnetic resonance: electronic structure of the active site and mechanistic implications.
    Pierce BS; Gardner JD; Bailey LJ; Brunold TC; Fox BG
    Biochemistry; 2007 Jul; 46(29):8569-78. PubMed ID: 17602574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of the Cys-Tyr cofactor on iron binding in the active site of human cysteine dioxygenase.
    Arjune S; Schwarz G; Belaidi AA
    Amino Acids; 2015 Jan; 47(1):55-63. PubMed ID: 25261132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase.
    Miller JR; Brunold TC
    Methods Enzymol; 2023; 682():101-135. PubMed ID: 36948699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and Functional Differences of Cysteine and 3-Mercaptopropionate Dioxygenases: A Computational Study.
    Yeh CG; Pierides C; Jameson GNL; de Visser SP
    Chemistry; 2021 Oct; 27(55):13793-13806. PubMed ID: 34310770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiol dioxygenase turnover yields benzothiazole products from 2-mercaptoaniline and O
    Morrow WP; Sardar S; Thapa P; Hossain MS; Foss FW; Pierce BS
    Arch Biochem Biophys; 2017 Oct; 631():66-74. PubMed ID: 28826737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Second-sphere interactions between the C93-Y157 cross-link and the substrate-bound Fe site influence the O₂ coupling efficiency in mouse cysteine dioxygenase.
    Li W; Blaesi EJ; Pecore MD; Crowell JK; Pierce BS
    Biochemistry; 2013 Dec; 52(51):9104-19. PubMed ID: 24279989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cysteine oxidation reactions catalyzed by a mononuclear non-heme iron enzyme (OvoA) in ovothiol biosynthesis.
    Song H; Her AS; Raso F; Zhen Z; Huo Y; Liu P
    Org Lett; 2014 Apr; 16(8):2122-5. PubMed ID: 24684381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.