BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 32543170)

  • 1. Metal-Organic Framework-Derived p-Cu
    Wu J; Huang P; Fan H; Wang G; Liu W
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30304-30312. PubMed ID: 32543170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Ce-Fe
    Wu J; Liu J; Jin L; Hu B; Liu W
    Inorg Chem; 2022 Aug; 61(32):12591-12598. PubMed ID: 35920803
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Synthesis of α-Fe
    Lei B; Xu D; Wei B; Xie T; Xiao C; Jin W; Xu L
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4785-4795. PubMed ID: 33430580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformally Coupling CoAl-Layered Double Hydroxides on Fluorine-Doped Hematite: Surface and Bulk Co-Modification for Enhanced Photoelectrochemical Water Oxidation.
    Wang C; Long X; Wei S; Wang T; Li F; Gao L; Hu Y; Li S; Jin J
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29799-29806. PubMed ID: 31368692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational construction of S-doped FeOOH onto Fe
    Duc Quang N; Cao Van P; Majumder S; Jeong JR; Kim D; Kim C
    J Colloid Interface Sci; 2022 Jun; 616():749-758. PubMed ID: 35247813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Bulk/Surface Engineering of Hematite To Synergistically Improve Its Photoelectrochemical Water Splitting Performance.
    Yuan Y; Gu J; Ye KH; Chai Z; Yu X; Chen X; Zhao C; Zhang Y; Mai W
    ACS Appl Mater Interfaces; 2016 Jun; 8(25):16071-7. PubMed ID: 27275649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Hole Transfer in the Fluorine-Doped Hematite Photoanode by Depositing Ultrathin Amorphous FeOOH/CoOOH Cocatalysts.
    Wang T; Long X; Wei S; Wang P; Wang C; Jin J; Hu G
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49705-49712. PubMed ID: 33104336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interface Engineering of CoFe-LDH Modified Ti: α-Fe
    Chang Y; Han M; Ding Y; Wei H; Zhang D; Luo H; Li X; Yan X
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of a Cu
    Zeng X; Gao Q; Song P; Zhang X; Xie J; Dong Q; Qi J; Xing XS; Du J
    RSC Adv; 2024 Jan; 14(7):4568-4574. PubMed ID: 38312728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual-doping in the bulk and the surface to ameliorate the hematite anode for photoelectrochemical water oxidation.
    Wang T; Gao L; Wang P; Long X; Chai H; Li F; Jin J
    J Colloid Interface Sci; 2022 Oct; 624():60-69. PubMed ID: 35660911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Charge Separation through ALD-Modified Fe2 O3 /Fe2 TiO5 Nanorod Heterojunction for Photoelectrochemical Water Oxidation.
    Li C; Wang T; Luo Z; Liu S; Gong J
    Small; 2016 Jul; 12(25):3415-22. PubMed ID: 27197643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating Charge Transfer Efficiency of Hematite Photoanode with Hybrid Dual-Metal-Organic Frameworks for Boosting Photoelectrochemical Water Oxidation.
    Wang K; Liu Y; Kawashima K; Yang X; Yin X; Zhan F; Liu M; Qiu X; Li W; Mullins CB; Li J
    Adv Sci (Weinh); 2020 Dec; 7(23):2002563. PubMed ID: 33304764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deposition of FeOOH Layer on Ultrathin Hematite Nanoflakes to Promote Photoelectrochemical Water Splitting.
    Zhang W; Zhang Y; Miao X; Zhao L; Zhu C
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradient doping of phosphorus in Fe
    Luo Z; Li C; Liu S; Wang T; Gong J
    Chem Sci; 2017 Jan; 8(1):91-100. PubMed ID: 28451152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hematite nanorod arrays top-decorated with an MIL-101 layer for photoelectrochemical water oxidation.
    Wang H; He X; Li W; Chen H; Fang W; Tian P; Xiao F; Zhao L
    Chem Commun (Camb); 2019 Sep; 55(76):11382-11385. PubMed ID: 31482876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unveiling the influence of 5,10,15,20-tetrakis (4-carboxyl phenyl) porphyrin on the photogenerated charge behavior and photoelectrochemical water oxidation of hematite photoanode.
    Bu Q; Liu X; Zhao Q; Lu G; Zhu X; Liu Q; Xie T
    J Colloid Interface Sci; 2022 Nov; 626():345-354. PubMed ID: 35792465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CdS Nanoparticle-Modified α-Fe
    Yin R; Liu M; Tang R; Yin L
    Nanoscale Res Lett; 2017 Sep; 12(1):520. PubMed ID: 28866742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quasi-Topotactic Transformation of FeOOH Nanorods to Robust Fe
    Liao A; He H; Tang L; Li Y; Zhang J; Chen J; Chen L; Zhang C; Zhou Y; Zou Z
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10141-10146. PubMed ID: 29498822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.