These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32543198)

  • 1. Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains.
    Karunanithy G; Reinstein J; Hansen DF
    J Phys Chem Lett; 2020 Jul; 11(14):5649-5654. PubMed ID: 32543198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A
    Mackenzie HW; Hansen DF
    J Biomol NMR; 2017 Nov; 69(3):123-132. PubMed ID: 29127559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR.
    Gerecht K; Figueiredo AM; Hansen DF
    Chem Commun (Camb); 2017 Sep; 53(72):10062-10065. PubMed ID: 28840203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new class of CEST experiment based on selecting different magnetization components at the start and end of the CEST relaxation element: an application to
    Yuwen T; Kay LE
    J Biomol NMR; 2018 Feb; 70(2):93-102. PubMed ID: 29352366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme.
    Mulder FA; Skrynnikov NR; Hon B; Dahlquist FW; Kay LE
    J Am Chem Soc; 2001 Feb; 123(5):967-75. PubMed ID: 11456632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme.
    Mulder FA; Hon B; Mittermaier A; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Feb; 124(7):1443-51. PubMed ID: 11841314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Sampling of Protein Conformational Transitions via Dynamically Optimized Collective Variables.
    Brotzakis ZF; Parrinello M
    J Chem Theory Comput; 2019 Feb; 15(2):1393-1398. PubMed ID: 30557019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CEST NMR experiment to obtain glycine
    Tiwari VP; Vallurupalli P
    J Biomol NMR; 2020 Sep; 74(8-9):443-455. PubMed ID: 32696193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility and ligand exchange in a buried cavity mutant of T4 lysozyme studied by multinuclear NMR.
    Mulder FA; Hon B; Muhandiram DR; Dahlquist FW; Kay LE
    Biochemistry; 2000 Oct; 39(41):12614-22. PubMed ID: 11027141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cavity as a source of conformational fluctuation and high-energy state: high-pressure NMR study of a cavity-enlarged mutant of T4 lysozyme.
    Maeno A; Sindhikara D; Hirata F; Otten R; Dahlquist FW; Yokoyama S; Akasaka K; Mulder FA; Kitahara R
    Biophys J; 2015 Jan; 108(1):133-45. PubMed ID: 25564860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple frequency saturation pulses reduce CEST acquisition time for quantifying conformational exchange in biomolecules.
    Leninger M; Marsiglia WM; Jerschow A; Traaseth NJ
    J Biomol NMR; 2018 May; 71(1):19-30. PubMed ID: 29796789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda.
    Di Paolo A; Duval V; Matagne A; Redfield C
    Biomol NMR Assign; 2010 Apr; 4(1):111-4. PubMed ID: 20300891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of all 20 amino acids at site 96 to the stability and structure of T4 lysozyme.
    Mooers BH; Baase WA; Wray JW; Matthews BW
    Protein Sci; 2009 May; 18(5):871-80. PubMed ID: 19384988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined High-Pressure and Multiquantum NMR and Molecular Simulation Propose a Role for N-Terminal Salt Bridges in Amyloid-Beta.
    Vemulapalli SPB; Becker S; Griesinger C; Rezaei-Ghaleh N
    J Phys Chem Lett; 2021 Oct; 12(40):9933-9939. PubMed ID: 34617758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Determination of Fast Protein Dynamics from NMR Chemical Exchange Saturation Transfer Data.
    Gu Y; Hansen AL; Peng Y; Brüschweiler R
    Angew Chem Int Ed Engl; 2016 Feb; 55(9):3117-9. PubMed ID: 26821600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The pK
    Brockerman JA; Okon M; Withers SG; McIntosh LP
    Protein Sci; 2019 Mar; 28(3):620-632. PubMed ID: 30537432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD and NMR determination of the solution structure of a peptide corresponding to T4 lysozyme residues 38-51.
    Najbar LV; Craik DJ; Wade JD; Lin F; McLeish MJ
    Biochim Biophys Acta; 1995 Jul; 1250(2):163-70. PubMed ID: 7632721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arginine Side-Chain Hydrogen Exchange: Quantifying Arginine Side-Chain Interactions in Solution.
    Mackenzie HW; Hansen DF
    Chemphyschem; 2019 Jan; 20(2):252-259. PubMed ID: 30085401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer.
    Vallurupalli P; Sekhar A; Yuwen T; Kay LE
    J Biomol NMR; 2017 Apr; 67(4):243-271. PubMed ID: 28317074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.