These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 32543249)

  • 41. Multiple sensory neurons mediate starvation-dependent aversive navigation in
    Jang MS; Toyoshima Y; Tomioka M; Kunitomo H; Iino Y
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18673-18683. PubMed ID: 31455735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. GABAergic synaptic plasticity during a developmentally regulated sleep-like state in C. elegans.
    Dabbish NS; Raizen DM
    J Neurosci; 2011 Nov; 31(44):15932-43. PubMed ID: 22049436
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Optogenetics in Caenorhabditis elegans.
    Tsukada Y; Mori I
    Adv Exp Med Biol; 2021; 1293():321-334. PubMed ID: 33398823
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Toward a living soft microrobot through optogenetic locomotion control of
    Dong X; Kheiri S; Lu Y; Xu Z; Zhen M; Liu X
    Sci Robot; 2021 Jun; 6(55):. PubMed ID: 34193562
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise optical control of gene expression in
    Davis L; Radman I; Goutou A; Tynan A; Baxter K; Xi Z; O'Shea JM; Chin JW; Greiss S
    Elife; 2021 Aug; 10():. PubMed ID: 34350826
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Call it Worm Sleep.
    Trojanowski NF; Raizen DM
    Trends Neurosci; 2016 Feb; 39(2):54-62. PubMed ID: 26747654
    [TBL] [Abstract][Full Text] [Related]  

  • 47.
    Wang X; Li T; Hu J; Feng Z; Zhong R; Nie W; Yang X; Zou Y
    STAR Protoc; 2021 Mar; 2(1):100309. PubMed ID: 33598656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative imaging of sleep behavior in Caenorhabditis elegans and larval Drosophila melanogaster.
    Churgin MA; Szuperak M; Davis KC; Raizen DM; Fang-Yen C; Kayser MS
    Nat Protoc; 2019 May; 14(5):1455-1488. PubMed ID: 30953041
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sensory systems: their impact on C. elegans survival.
    Allen E; Ren J; Zhang Y; Alcedo J
    Neuroscience; 2015 Jun; 296():15-25. PubMed ID: 24997267
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Discriminating between sleep and exercise-induced fatigue using computer vision and behavioral genetics.
    Schuch KN; Govindarajan LN; Guo Y; Baskoylu SN; Kim S; Kimia B; Serre T; Hart AC
    J Neurogenet; 2020; 34(3-4):453-465. PubMed ID: 32811254
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Do developmental temperatures affect redox level and lifespan in C. elegans through upregulation of peroxiredoxin?
    Henderson D; Huebner C; Markowitz M; Taube N; Harvanek ZM; Jakob U; Knoefler D
    Redox Biol; 2018 Apr; 14():386-390. PubMed ID: 29055282
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetics of lifespan in C. elegans: molecular diversity, physiological complexity, mechanistic simplicity.
    Hekimi S; Burgess J; Bussière F; Meng Y; Bénard C
    Trends Genet; 2001 Dec; 17(12):712-8. PubMed ID: 11718925
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Descending pathway facilitates undulatory wave propagation in
    Xu T; Huo J; Shao S; Po M; Kawano T; Lu Y; Wu M; Zhen M; Wen Q
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4493-E4502. PubMed ID: 29686107
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Basal forebrain parvalbumin neurons modulate vigilant attention and rescue deficits produced by sleep deprivation.
    Schiffino FL; McNally JM; Maness EB; McKenna JT; Brown RE; Strecker RE
    J Sleep Res; 2024 May; 33(3):e13919. PubMed ID: 37211393
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans.
    Shipley FB; Clark CM; Alkema MJ; Leifer AM
    Front Neural Circuits; 2014; 8():28. PubMed ID: 24715856
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans.
    Husson SJ; Liewald JF; Schultheis C; Stirman JN; Lu H; Gottschalk A
    PLoS One; 2012; 7(7):e40937. PubMed ID: 22815873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The €100 lab: A 3D-printable open-source platform for fluorescence microscopy, optogenetics, and accurate temperature control during behaviour of zebrafish, Drosophila, and Caenorhabditis elegans.
    Maia Chagas A; Prieto-Godino LL; Arrenberg AB; Baden T
    PLoS Biol; 2017 Jul; 15(7):e2002702. PubMed ID: 28719603
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Low survivorship of dauer larva in the nematode Caenorhabditis japonica, a potential comparative system for a model organism, C. elegans.
    Tanaka R; Okumura E; Kanzaki N; Yoshiga T
    Exp Gerontol; 2012 May; 47(5):388-93. PubMed ID: 22426108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments.
    Qiu Z; Tu L; Huang L; Zhu T; Nock V; Yu E; Liu X; Wang W
    Biomicrofluidics; 2015 Jan; 9(1):014123. PubMed ID: 25759756
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.