BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 32543394)

  • 1. Ferric oxide: A favorable additive to balance mechanical strength and biological activity of silicocarnotite bioceramic.
    Deng F; Rao J; Ning C
    J Mech Behav Biomed Mater; 2020 Sep; 109():103819. PubMed ID: 32543394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper containing silicocarnotite bioceramic with improved mechanical strength and antibacterial activity.
    Xu S; Wu Q; Guo Y; Ning C; Dai K
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111493. PubMed ID: 33255060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Favorable osteogenic activity of iron doped in silicocarnotite bioceramic: In vitro and
    Zhang J; Deng F; Liu X; Ge Y; Zeng Y; Zhai Z; Ning C; Li H
    J Orthop Translat; 2022 Jan; 32():103-111. PubMed ID: 35228992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytocompatibility and osteogenic activity of a novel calcium phosphate silicate bioceramic: Silicocarnotite.
    Duan W; Ning C; Tang T
    J Biomed Mater Res A; 2013 Jul; 101(7):1955-61. PubMed ID: 23225789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.
    Zhao S; Peng L; Xie G; Li D; Zhao J; Ning C
    Am J Sports Med; 2014 Aug; 42(8):1920-9. PubMed ID: 24853168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary and synergistic effects on osteogenic and angiogenic properties of copper-incorporated silicocarnotite bioceramic: In vitro and in vivo studies.
    Wu Q; Xu S; Wang X; Jia B; Han Y; Zhuang Y; Sun Y; Sun Z; Guo Y; Kou H; Ning C; Dai K
    Biomaterials; 2021 Jan; 268():120553. PubMed ID: 33253963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration.
    Huang Y; Wu C; Zhang X; Chang J; Dai K
    Acta Biomater; 2018 Jan; 66():81-92. PubMed ID: 28864248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactive effects of cerium and copper to tune the microstructure of silicocarnotite bioceramics towards enhanced bioactivity and good biosafety.
    Xu S; Wu Q; He B; Rao J; Chow DHK; Xu J; Wang X; Sun Y; Ning C; Dai K
    Biomaterials; 2022 Sep; 288():121751. PubMed ID: 36031456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties.
    No YJ; Roohaniesfahani S; Lu Z; Shi J; Zreiqat H
    Biomed Mater; 2017 Jun; 12(3):035003. PubMed ID: 28348275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound-assisted synthesis of nanocrystallized silicocarnotite biomaterial with improved sinterability and osteogenic activity.
    Xu S; Wu Q; Wu J; Kou H; Zhu Y; Ning C; Dai K
    J Mater Chem B; 2020 Apr; 8(15):3092-3103. PubMed ID: 32207759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo.
    Xin R; Leng Y; Chen J; Zhang Q
    Biomaterials; 2005 Nov; 26(33):6477-86. PubMed ID: 15992923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical and Biocompatibility Properties of Calcium Phosphate Bioceramics Derived from Salmon Fish Bone Wastes.
    Bas M; Daglilar S; Kuskonmaz N; Kalkandelen C; Erdemir G; Kuruca SE; Tulyaganov D; Yoshioka T; Gunduz O; Ficai D; Ficai A
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33138182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties and in vitro bioactivity of Ca5(PO4)2SiO4 bioceramic.
    Lu W; Duan W; Guo Y; Ning C
    J Biomater Appl; 2012 Feb; 26(6):637-50. PubMed ID: 20876633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel tricalcium silicate/magnesium phosphate composite bone cement having high compressive strength, in vitro bioactivity and cytocompatibility.
    Liu W; Zhai D; Huan Z; Wu C; Chang J
    Acta Biomater; 2015 Jul; 21():217-27. PubMed ID: 25890099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro bioactivity, mechanical behavior and antibacterial properties of mesoporous SiO
    Mubina MSK; Shailajha S; Sankaranarayanan R; Saranya L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103379. PubMed ID: 31398691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics.
    Venkatraman SK; Choudhary R; Krishnamurithy G; Raghavendran HRB; Murali MR; Kamarul T; Suresh A; Abraham J; Swamiappan S
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111466. PubMed ID: 33255048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration.
    He F; Lu T; Fang X; Li Y; Zuo F; Deng X; Ye J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110892. PubMed ID: 32409050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.