These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32543529)

  • 1. Trap stiffness modification of an optically trapped microsphere through directed motion of nanoparticles.
    Subhash Iyengar S; P P; Ananthamurthy S; Bhattacharya S
    Appl Opt; 2020 Jun; 59(17):5114-5123. PubMed ID: 32543529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.
    Ody T; Panth M; Sommers AD; Eid KF
    Langmuir; 2016 Jul; 32(27):6967-76. PubMed ID: 27269182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic flow measurements with optically trapped microprobes.
    Nemet BA; Cronin-Golomb M
    Opt Lett; 2002 Aug; 27(15):1357-9. PubMed ID: 18026449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry.
    Roy B; Pal SB; Haldar A; Gupta RK; Ghosh N; Banerjee A
    Opt Express; 2012 Apr; 20(8):8317-28. PubMed ID: 22513543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion, deformation and pearling of ferrofluid droplets due to a tunable moving magnetic field.
    Paul G; Das PK; Manna I
    Soft Matter; 2020 Feb; 16(6):1642-1652. PubMed ID: 31960869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing technique using circular motion of a microsphere controlled by optical pressure for a nanocoordinate measuring machine.
    Michihata M; Nagasaka Y; Hayashi T; Takaya Y
    Appl Opt; 2009 Jan; 48(2):198-205. PubMed ID: 19137029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of external forces on discrete motion within holographic optical tweezers.
    Eriksson E; Keen S; Leach J; Goksör M; Padgett MJ
    Opt Express; 2007 Dec; 15(26):18268-74. PubMed ID: 19551124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring characteristics of the corner sections of a domain wall trap nanostructure with the two-field direction method.
    Nhut-Minh Ho V; Duc-Anh Ho L; Tran MT; Cao XH; Dao VA; Tong DH; Ngo DT; Hoang DQ
    RSC Adv; 2018 Dec; 8(73):41828-41835. PubMed ID: 35558803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic Trapping of Bacteria at Low Magnetic Fields.
    Wang ZM; Wu RG; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Jun; 6():26945. PubMed ID: 27254771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability analysis and thermal motion of optically trapped nanowires.
    Simpson SH; Hanna S
    Nanotechnology; 2012 May; 23(20):205502. PubMed ID: 22543265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameter exploration of optically trapped liquid aerosols.
    Burnham DR; Reece PJ; McGloin D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051123. PubMed ID: 21230453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motion analysis of optically trapped particles and cells using 2D Fourier analysis.
    Kristensen MV; Ahrendt P; Lindballe TB; Nielsen OH; Kylling AP; Karstoft H; Imparato A; Hosta-Rigau L; Stadler B; Stapelfeldt H; Keiding SR
    Opt Express; 2012 Jan; 20(3):1953-62. PubMed ID: 22330436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triply Magic Conditions for Microwave Transition of Optically Trapped Alkali-Metal Atoms.
    Li G; Tian Y; Wu W; Li S; Li X; Liu Y; Zhang P; Zhang T
    Phys Rev Lett; 2019 Dec; 123(25):253602. PubMed ID: 31922798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetowetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet.
    Nguyen NT; Zhu G; Chua YC; Phan VN; Tan SH
    Langmuir; 2010 Aug; 26(15):12553-9. PubMed ID: 20608704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating orientation of optically trapped, near vertical, microsphere dimers using central moments and off-focus imaging.
    Raudsepp A; Jameson GB; Williams MAK
    Appl Opt; 2022 Jan; 61(2):607-614. PubMed ID: 35200903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of forces and displacements along the axial direction in an optical trap.
    Deufel C; Wang MD
    Biophys J; 2006 Jan; 90(2):657-67. PubMed ID: 16258039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles.
    Arzola AV; Jákl P; Chvátal L; Zemánek P
    Opt Express; 2014 Jun; 22(13):16207-21. PubMed ID: 24977872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measuring the complete force field of an optical trap.
    Jahnel M; Behrndt M; Jannasch A; Schäffer E; Grill SW
    Opt Lett; 2011 Apr; 36(7):1260-2. PubMed ID: 21479051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical trapping of NaYF4:Er3+,Yb3+ upconverting fluorescent nanoparticles.
    Haro-González P; del Rosal B; Maestro LM; Rodríguez EM; Naccache R; Capobianco JA; Dholakia K; Solé JG; Jaque D
    Nanoscale; 2013 Dec; 5(24):12192-9. PubMed ID: 24132346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground-state structures and structural transitions in a monolayer of magnetic dipolar particles in the presence of an external magnetic field.
    Danilov V; Prokopyeva T; Kantorovich S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061408. PubMed ID: 23367951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.