These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32543534)

  • 1. Correction of non-common path aberrations in pyramid wavefront sensors to recover the optimal magnitude gain using a deformable lens.
    Quintavalla M; Bergomi M; Magrin D; Bonora S; Ragazzoni R
    Appl Opt; 2020 Jun; 59(17):5151-5157. PubMed ID: 32543534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront correction and high-resolution in vivo OCT imaging with an objective integrated multi-actuator adaptive lens.
    Bonora S; Jian Y; Zhang P; Zam A; Pugh EN; Zawadzki RJ; Sarunic MV
    Opt Express; 2015 Aug; 23(17):21931-41. PubMed ID: 26368169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal adaptive optics imaging with a pyramid wavefront sensor.
    Brunner E; Shatokhina J; Shirazi MF; Drexler W; Leitgeb R; Pollreisz A; Hitzenberger CK; Ramlau R; Pircher M
    Biomed Opt Express; 2021 Oct; 12(10):5969-5990. PubMed ID: 34745716
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomography approach for multi-object adaptive optics.
    Vidal F; Gendron E; Rousset G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A253-64. PubMed ID: 21045886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-common path aberration correction in an adaptive optics scanning ophthalmoscope.
    Sulai YN; Dubra A
    Biomed Opt Express; 2014 Sep; 5(9):3059-73. PubMed ID: 25401020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital pyramid wavefront sensor with tunable modulation.
    Akondi V; Castillo S; Vohnsen B
    Opt Express; 2013 Jul; 21(15):18261-72. PubMed ID: 23938697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visible pyramid wavefront sensing approach for daylight adaptive optics.
    Huang L; Wang J; Chen L; Yuan H; Li H; Yao K
    Opt Express; 2022 Mar; 30(7):10833-10849. PubMed ID: 35473041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction.
    Wahl DJ; Zhang P; Mocci J; Quintavalla M; Muradore R; Jian Y; Bonora S; Sarunic MV; Zawadzki RJ
    Biomed Opt Express; 2019 Sep; 10(9):4757-4774. PubMed ID: 31565523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy.
    van Dam MA
    J Opt Soc Am A Opt Image Sci Vis; 2005 Aug; 22(8):1509-14. PubMed ID: 16134845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tests and evaluation of a variable focus liquid lens for curvature wavefront sensors in astronomy.
    Fuentes-Fernández J; Cuevas S; Álvarez-Nuñez LC; Watson A
    Appl Opt; 2013 Oct; 52(30):7256-64. PubMed ID: 24216579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uplink wavefront corrector system: from paper to reality.
    Martínez Rey N; Rodríguez Ramos LF; Sodnik Z
    Opt Express; 2020 Mar; 28(5):5886-5897. PubMed ID: 32225850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iterations.
    Hutterer V; Ramlau R
    Appl Opt; 2018 Oct; 57(30):8790-8804. PubMed ID: 30461858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calibration and precompensation of noncommon path aberrations for extreme adaptive optics.
    Sauvage JF; Fusco T; Rousset G; Petit C
    J Opt Soc Am A Opt Image Sci Vis; 2007 Aug; 24(8):2334-46. PubMed ID: 17621336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor.
    Chamot SR; Dainty C; Esposito S
    Opt Express; 2006 Jan; 14(2):518-26. PubMed ID: 19503366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative comparison of different-shaped wavefront sensors and preliminary results for defocus aberrations on a mechanical eye.
    Carvalho LA; Chamon W; Schor P; Castro JC
    Arq Bras Oftalmol; 2006; 69(2):239-47. PubMed ID: 16699677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hartmann-Shack wavefront sensing without a lenslet array using a digital micromirror device.
    Vohnsen B; Carmichael Martins A; Qaysi S; Sharmin N
    Appl Opt; 2018 Aug; 57(22):E199-E204. PubMed ID: 30117885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daytime HyWFS approach for daylight adaptive optics wavefront sensing.
    Huang L; Yao K; Chen L; Wang J; Liu Y
    Opt Express; 2024 Feb; 32(4):5996-6010. PubMed ID: 38439313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.