These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32543538)

  • 1. Improving the quality of full-color holographic three-dimensional displays using depth-related multiple wavefront recording planes with uniform active areas.
    Piao YL; Erdenebat MU; Zhao Y; Kwon KC; Piao ML; Kang H; Kim N
    Appl Opt; 2020 Jun; 59(17):5179-5188. PubMed ID: 32543538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Max-depth-range technique for faster full-color hologram generation.
    Sifatul Islam M; Piao YL; Zhao Y; Kwon KC; Cho E; Kim N
    Appl Opt; 2020 Apr; 59(10):3156-3164. PubMed ID: 32400598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU.
    Phan AH; Piao ML; Gil SK; Kim N
    Appl Opt; 2014 Aug; 53(22):4817-24. PubMed ID: 25090310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acceleration and expansion of a photorealistic computer-generated hologram using backward ray tracing and multiple off-axis wavefront recording plane methods.
    Sun M; Yuan Y; Bi Y; Zhang S; Zhu J; Zhang W
    Opt Express; 2020 Nov; 28(23):34994-35005. PubMed ID: 33182955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavefront recording plane-like method for polygon-based holograms.
    Wang F; Blinder D; Ito T; Shimobaba T
    Opt Express; 2023 Jan; 31(2):1224-1233. PubMed ID: 36785162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image quality improvement of holographic 3-D images based on a wavefront recording plane method with a limiting diffraction region.
    Yanagihara H; Shimobaba T; Kakue T; Ito T
    Opt Express; 2020 Jun; 28(12):17853-17867. PubMed ID: 32679988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast Hologram Calculation Method Based on Wavefront Precise Diffraction.
    Wang Z; Li Y; Tang Z; Li Z; Wang D
    Micromachines (Basel); 2023 Aug; 14(9):. PubMed ID: 37763853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation.
    Zheng H; Zhou C; Shui X; Yu Y
    Appl Opt; 2022 Feb; 61(5):B262-B270. PubMed ID: 35201148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast generation of digital holograms based on warping of the wavefront recording plane.
    Tsang PW; Poon TC
    Opt Express; 2015 Mar; 23(6):7667-73. PubMed ID: 25837104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple calculation of a computer-generated hologram for lensless holographic 3D projection using a nonuniform sampled wavefront recording plane.
    Chang C; Wu J; Qi Y; Yuan C; Nie S; Xia J
    Appl Opt; 2016 Oct; 55(28):7988-7996. PubMed ID: 27828036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceleration of computer-generated hologram using wavefront-recording plane and look-up table in three-dimensional holographic display.
    Pi D; Liu J; Han Y; Yu S; Xiang N
    Opt Express; 2020 Mar; 28(7):9833-9841. PubMed ID: 32225583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive deep learning model for 3D color holography.
    Yolalmaz A; YĆ¼ce E
    Sci Rep; 2022 Feb; 12(1):2487. PubMed ID: 35169161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accelerating hologram generation using oriented-separable convolution and wavefront recording planes.
    Shimobaba T; Makowski M; Shiomi H; Wang F; Hara T; Sypek M; Suszek J; Nishitsuji T; Shiraki A; Kakue T; Ito T
    Opt Express; 2022 Sep; 30(20):36564-36575. PubMed ID: 36258582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth-layer weighted prediction method for a full-color polygon-based holographic system with real objects.
    Zhao Y; Kwon KC; Piao YL; Jeon SH; Kim N
    Opt Lett; 2017 Jul; 42(13):2599-2602. PubMed ID: 28957294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of real-time large computer generated hologram using wavefront recording method.
    Weng J; Shimobaba T; Okada N; Nakayama H; Oikawa M; Masuda N; Ito T
    Opt Express; 2012 Feb; 20(4):4018-23. PubMed ID: 22418159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method.
    Zhao Y; Kwon KC; Erdenebat MU; Islam MS; Jeon SH; Kim N
    Appl Opt; 2018 May; 57(15):4253-4262. PubMed ID: 29791403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation of full-color holographic system using non-uniformly sampled 2D images and compressed point cloud gridding.
    Zhao Y; Kwon KC; Erdenebat MU; Jeon SH; Piao ML; Kim N
    Opt Express; 2019 Oct; 27(21):29746-29758. PubMed ID: 31684232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hologram computation using the radial point spread function.
    Yasuki D; Shimobaba T; Makowski M; Suszek J; Kakue T; Ito T
    Appl Opt; 2021 Oct; 60(28):8829-8837. PubMed ID: 34613109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acceleration of computer-generated holograms using tilted wavefront recording plane method.
    Arai D; Shimobaba T; Murano K; Endo Y; Hirayama R; Hiyama D; Kakue T; Ito T
    Opt Express; 2015 Jan; 23(2):1740-7. PubMed ID: 25835929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speckleless color dynamic three-dimensional holographic display based on complex amplitude modulation.
    Pi D; Liu J; Yu S
    Appl Opt; 2021 Sep; 60(25):7844-7848. PubMed ID: 34613261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.