These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32543558)

  • 1. Experimental evaluation of the self-shadow and its correction for on-water measurements of water-leaving radiance.
    Lin H; Lee Z; Lin G; Yu X
    Appl Opt; 2020 Jun; 59(17):5325-5334. PubMed ID: 32543558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-shading associated with a skylight-blocked approach system for the measurement of water-leaving radiance and its correction.
    Shang Z; Lee Z; Dong Q; Wei J
    Appl Opt; 2017 Sep; 56(25):7033-7040. PubMed ID: 29048001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiance transmittance measured at the ocean surface.
    Wei J; Lee Z; Lewis M; Pahlevan N; Ondrusek M; Armstrong R
    Opt Express; 2015 May; 23(9):11826-37. PubMed ID: 25969274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct measurement system of water-leaving albedo in the field by the skylight-blocked approach: Monte Carlo simulations.
    Shang Z; Yu X; Lee Z
    Opt Express; 2022 Jun; 30(13):23852-23867. PubMed ID: 36225058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A method to extrapolate the diffuse upwelling radiance attenuation coefficient to the surface as applied to the Marine Optical Buoy (MOBY).
    Voss KJ; Gordon HR; Flora S; Johnson BC; Yarbrough M; Feinholz M; Houlihan T
    J Atmos Ocean Technol; 2017 Jul; 34(7):1423-1432. PubMed ID: 28804202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instrument self-shading in underwater optical measurements: experimental data.
    Zibordi G; Ferrari GM
    Appl Opt; 1995 May; 34(15):2750-4. PubMed ID: 21052421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.
    He X; Bai Y; Pan D; Tang J; Wang D
    Opt Express; 2012 Aug; 20(18):20754-70. PubMed ID: 23037125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental analysis of the measurement precision of spectral water-leaving radiance in different water types.
    Wei J; Wang M; Lee Z; Ondrusek M; Zhang S; Ladner S
    Opt Express; 2021 Jan; 29(2):2780-2797. PubMed ID: 33726468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Revised spectral optimization approach to remove surface-reflected radiance for the estimation of remote-sensing reflectance from the above-water method.
    Lin J; Lee Z; Tilstone GH; Liu X; Wei J; Ondrusek M; Groom S
    Opt Express; 2023 Jul; 31(14):22964-22981. PubMed ID: 37475393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance.
    Wang M
    Appl Opt; 2006 Jun; 45(17):4122-8. PubMed ID: 16761054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations.
    Wang M
    Appl Opt; 2007 Mar; 46(9):1535-47. PubMed ID: 17334446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the equivalence of near-surface methods to determine the water-leaving radiance.
    Zibordi G; Talone M
    Opt Express; 2020 Feb; 28(3):3200-3214. PubMed ID: 32121993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects.
    Gordon HR; CastaƱo DJ
    Appl Opt; 1987 Jun; 26(11):2111-22. PubMed ID: 20489830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robust approach to directly measuring water-leaving radiance in the field.
    Lee Z; Pahlevan N; Ahn YH; Greb S; O'Donnell D
    Appl Opt; 2013 Mar; 52(8):1693-701. PubMed ID: 23478774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-leaving contribution to polarized radiation field over ocean.
    Zhai PW; Knobelspiesse K; Ibrahim A; Franz BA; Hu Y; Gao M; Frouin R
    Opt Express; 2017 Aug; 25(16):A689-A708. PubMed ID: 29041040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New theoretical formulation for the determination of radiance transmittance at the water-air interface.
    Dev PJ; Shanmugam P
    Opt Express; 2017 Oct; 25(22):27086-27103. PubMed ID: 29092190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polarization impacts on the water-leaving radiance retrieval from above-water radiometric measurements.
    Harmel T; Gilerson A; Tonizzo A; Chowdhary J; Weidemann A; Arnone R; Ahmed S
    Appl Opt; 2012 Dec; 51(35):8324-40. PubMed ID: 23262527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling hyperspectral normalized water-leaving radiance in a dynamic coastal ecosystem.
    Bausell JT; Kudela RM
    Opt Express; 2021 Jul; 29(15):24010-24024. PubMed ID: 34614654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of Raman scattering to water-leaving radiance: a reexamination.
    Gordon HR
    Appl Opt; 1999 May; 38(15):3166-74. PubMed ID: 18319905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evaluation of theoretical sea surface reflectance factors relevant to above-water radiometry.
    Zibordi G
    Opt Express; 2016 Mar; 24(6):A446-59. PubMed ID: 27136866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.