These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 32543595)
1. Discrete normalized Bargmann transform through the gyrator transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2020 Jun; 37(6):951-958. PubMed ID: 32543595 [TBL] [Abstract][Full Text] [Related]
2. Discrete Bargmann transform. Uriostegui K J Opt Soc Am A Opt Image Sci Vis; 2019 Aug; 36(8):1367-1373. PubMed ID: 31503562 [TBL] [Abstract][Full Text] [Related]
3. Fast and accurate computation of normalized Bargmann transform. Pei SC; Huang SG J Opt Soc Am A Opt Image Sci Vis; 2017 Jan; 34(1):18-26. PubMed ID: 28059230 [TBL] [Abstract][Full Text] [Related]
4. Unitary discrete linear canonical transform: analysis and application. Zhao L; Healy JJ; Sheridan JT Appl Opt; 2013 Mar; 52(7):C30-6. PubMed ID: 23458814 [TBL] [Abstract][Full Text] [Related]
5. Implementation of quantum and classical discrete fractional Fourier transforms. Weimann S; Perez-Leija A; Lebugle M; Keil R; Tichy M; Gräfe M; Heilmann R; Nolte S; Moya-Cessa H; Weihs G; Christodoulides DN; Szameit A Nat Commun; 2016 Mar; 7():11027. PubMed ID: 27006089 [TBL] [Abstract][Full Text] [Related]
6. Efficient Computation of the Zeros of the Bargmann Transform Under Additive White Noise. Escudero LA; Feldheim N; Koliander G; Romero JL Found Comut Math; 2024; 24(1):279-312. PubMed ID: 38389722 [TBL] [Abstract][Full Text] [Related]
7. Covariant discretization of axis-symmetric linear optical systems. Atakishiyev NM; Nagiyev SM; Vicent LE; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2301-14. PubMed ID: 11140490 [TBL] [Abstract][Full Text] [Related]
8. Uncertainty relation for the discrete Fourier transform. Massar S; Spindel P Phys Rev Lett; 2008 May; 100(19):190401. PubMed ID: 18518426 [TBL] [Abstract][Full Text] [Related]
9. Fast numerical algorithm for the linear canonical transform. Hennelly BM; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2005 May; 22(5):928-37. PubMed ID: 15898553 [TBL] [Abstract][Full Text] [Related]
10. Discrete Quadratic-Phase Fourier Transform: Theory and Convolution Structures. Srivastava HM; Lone WZ; Shah FA; Zayed AI Entropy (Basel); 2022 Sep; 24(10):. PubMed ID: 37420360 [TBL] [Abstract][Full Text] [Related]
11. Experimental implementation of the gyrator transform. Rodrigo JA; Alieva T; Calvo ML J Opt Soc Am A Opt Image Sci Vis; 2007 Oct; 24(10):3135-9. PubMed ID: 17912303 [TBL] [Abstract][Full Text] [Related]
12. Generalized prolate spheroidal wave functions for optical finite fractional Fourier and linear canonical transforms. Pei SC; Ding JJ J Opt Soc Am A Opt Image Sci Vis; 2005 Mar; 22(3):460-74. PubMed ID: 15770983 [TBL] [Abstract][Full Text] [Related]
13. Unitary transformation between Cartesian- and polar-pixellated screens. Vicent LE; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2008 Aug; 25(8):1875-84. PubMed ID: 18677349 [TBL] [Abstract][Full Text] [Related]
14. Geometry and dynamics in the fractional discrete Fourier transform. Wolf KB; Krötzsch G J Opt Soc Am A Opt Image Sci Vis; 2007 Mar; 24(3):651-8. PubMed ID: 17301854 [TBL] [Abstract][Full Text] [Related]
15. Random discrete linear canonical transform. Wei D; Wang R; Li YM J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2470-2476. PubMed ID: 27906273 [TBL] [Abstract][Full Text] [Related]
16. Constraints on additivity of the 1D discrete linear canonical transform. Zhao L; Healy JJ; Sheridan JT Appl Opt; 2015 Nov; 54(33):9960-5. PubMed ID: 26836564 [TBL] [Abstract][Full Text] [Related]
17. Hermite Functions, Lie Groups and Fourier Analysis. Celeghini E; Gadella M; Del Olmo MA Entropy (Basel); 2018 Oct; 20(11):. PubMed ID: 33266540 [TBL] [Abstract][Full Text] [Related]
18. Fractional Fourier transforms in two dimensions. Simon R; Wolf KB J Opt Soc Am A Opt Image Sci Vis; 2000 Dec; 17(12):2368-81. PubMed ID: 11140497 [TBL] [Abstract][Full Text] [Related]
19. Two-dimensional nonseparable linear canonical transform: sampling theorem and unitary discretization. Zhao L; Healy JJ; Sheridan JT J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2631-41. PubMed ID: 25606752 [TBL] [Abstract][Full Text] [Related]
20. Image encryption by encoding with a nonuniform optical beam in gyrator transform domains. Liu Z; Xu L; Lin C; Liu S Appl Opt; 2010 Oct; 49(29):5632-7. PubMed ID: 20935710 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]