These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 32543653)

  • 21. Integrative construction of regulatory region networks in 127 human reference epigenomes by matrix factorization.
    Liu D; Davila-Velderrain J; Zhang Z; Kellis M
    Nucleic Acids Res; 2019 Aug; 47(14):7235-7246. PubMed ID: 31265076
    [TBL] [Abstract][Full Text] [Related]  

  • 22. JMnorm: a novel joint multi-feature normalization method for integrative and comparative epigenomics.
    Xiang G; Guo Y; Bumcrot D; Sigova A
    Nucleic Acids Res; 2024 Jan; 52(2):e11. PubMed ID: 38055833
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracting a biologically latent space of lung cancer epigenetics with variational autoencoders.
    Wang Z; Wang Y
    BMC Bioinformatics; 2019 Nov; 20(Suppl 18):568. PubMed ID: 31760935
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinformatics analysis of circulating cell-free DNA sequencing data.
    Chan LL; Jiang P
    Clin Biochem; 2015 Oct; 48(15):962-75. PubMed ID: 25966961
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinformatics Analysis of DNA Methylation Through Bisulfite Sequencing Data.
    Sang F
    Methods Mol Biol; 2021; 2198():441-450. PubMed ID: 32822049
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tumor purity and differential methylation in cancer epigenomics.
    Wang F; Zhang N; Wang J; Wu H; Zheng X
    Brief Funct Genomics; 2016 Nov; 15(6):408-419. PubMed ID: 27199459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. NUCLIZE for quantifying epigenome: generating histone modification data at single-nucleosome resolution using genuine nucleosome positions.
    Zheng D; Trynda J; Sun Z; Li Z
    BMC Genomics; 2019 Jul; 20(1):541. PubMed ID: 31266464
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring bacterial epigenomics in the next-generation sequencing era: a new approach for an emerging frontier.
    Chen P; Jeannotte R; Weimer BC
    Trends Microbiol; 2014 May; 22(5):292-300. PubMed ID: 24725482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tools and Strategies for Analysis of Genome-Wide and Gene-Specific DNA Methylation Patterns.
    Chatterjee A; Rodger EJ; Morison IM; Eccles MR; Stockwell PA
    Methods Mol Biol; 2017; 1537():249-277. PubMed ID: 27924599
    [TBL] [Abstract][Full Text] [Related]  

  • 31. scMET: Bayesian modeling of DNA methylation heterogeneity at single-cell resolution.
    Kapourani CA; Argelaguet R; Sanguinetti G; Vallejos CA
    Genome Biol; 2021 Apr; 22(1):114. PubMed ID: 33879195
    [TBL] [Abstract][Full Text] [Related]  

  • 32. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor.
    Sheffield NC; Bock C
    Bioinformatics; 2016 Feb; 32(4):587-9. PubMed ID: 26508757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epigenetics in comparative biology: why we should pay attention.
    Burggren WW; Crews D
    Integr Comp Biol; 2014 Jul; 54(1):7-20. PubMed ID: 24722321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Next-generation technologies and data analytical approaches for epigenomics.
    Mensaert K; Denil S; Trooskens G; Van Criekinge W; Thas O; De Meyer T
    Environ Mol Mutagen; 2014 Apr; 55(3):155-70. PubMed ID: 24327356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale comparative epigenomics reveals hierarchical regulation of non-CG methylation in
    Zhang Y; Harris CJ; Liu Q; Liu W; Ausin I; Long Y; Xiao L; Feng L; Chen X; Xie Y; Chen X; Zhan L; Feng S; Li JJ; Wang H; Zhai J; Jacobsen SE
    Proc Natl Acad Sci U S A; 2018 Jan; 115(5):E1069-E1074. PubMed ID: 29339507
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chicken model organism for epigenomic research.
    Beacon TH; Davie JR
    Genome; 2021 Apr; 64(4):476-489. PubMed ID: 33232179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. seqQscorer: automated quality control of next-generation sequencing data using machine learning.
    Albrecht S; Sprang M; Andrade-Navarro MA; Fontaine JF
    Genome Biol; 2021 Mar; 22(1):75. PubMed ID: 33673854
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational schemes for the prediction and annotation of enhancers from epigenomic assays.
    Whitaker JW; Nguyen TT; Zhu Y; Wildberg A; Wang W
    Methods; 2015 Jan; 72():86-94. PubMed ID: 25461775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring Epigenomic Datasets by ChIPseeker.
    Wang Q; Li M; Wu T; Zhan L; Li L; Chen M; Xie W; Xie Z; Hu E; Xu S; Yu G
    Curr Protoc; 2022 Oct; 2(10):e585. PubMed ID: 36286622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Machine Learning and Integrative Analysis of Biomedical Big Data.
    Mirza B; Wang W; Wang J; Choi H; Chung NC; Ping P
    Genes (Basel); 2019 Jan; 10(2):. PubMed ID: 30696086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.