BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 32543830)

  • 1. The Concept of Chemical Generators: On-Site On-Demand Production of Hazardous Reagents in Continuous Flow.
    Dallinger D; Gutmann B; Kappe CO
    Acc Chem Res; 2020 Jul; 53(7):1330-1341. PubMed ID: 32543830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-flow technology—a tool for the safe manufacturing of active pharmaceutical ingredients.
    Gutmann B; Cantillo D; Kappe CO
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6688-728. PubMed ID: 25989203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroorganic Synthesis under Flow Conditions.
    Elsherbini M; Wirth T
    Acc Chem Res; 2019 Dec; 52(12):3287-3296. PubMed ID: 31693339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow chemistry: intelligent processing of gas-liquid transformations using a tube-in-tube reactor.
    Brzozowski M; O'Brien M; Ley SV; Polyzos A
    Acc Chem Res; 2015 Feb; 48(2):349-62. PubMed ID: 25611216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Microreactors for the On-Demand Generation, Separation, and Reaction of Gases.
    Hone CA; Kappe CO
    Chemistry; 2020 Oct; 26(58):13108-13117. PubMed ID: 32515835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving continuous manufacturing: technologies and approaches for synthesis, workup, and isolation of drug substance. May 20-21, 2014 Continuous Manufacturing Symposium.
    Baxendale IR; Braatz RD; Hodnett BK; Jensen KF; Johnson MD; Sharratt P; Sherlock JP; Florence AJ
    J Pharm Sci; 2015 Mar; 104(3):781-91. PubMed ID: 25470351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Fundamentals Behind the Use of Flow Reactors in Electrochemistry.
    Noël T; Cao Y; Laudadio G
    Acc Chem Res; 2019 Oct; 52(10):2858-2869. PubMed ID: 31573791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes.
    Laporte AAH; Masson TM; Zondag SDA; Noël T
    Angew Chem Int Ed Engl; 2024 Mar; 63(11):e202316108. PubMed ID: 38095968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.
    Friis SD; Lindhardt AT; Skrydstrup T
    Acc Chem Res; 2016 Apr; 49(4):594-605. PubMed ID: 26999377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous flow techniques in organic synthesis.
    Jas G; Kirschning A
    Chemistry; 2003 Dec; 9(23):5708-23. PubMed ID: 14673841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A versatile non-fouling multi-step flow reactor platform: demonstration for partial oxidation synthesis of iron oxide nanoparticles.
    Besenhard MO; Pal S; Storozhuk L; Dawes S; Thanh NTK; Norfolk L; Staniland S; Gavriilidis A
    Lab Chip; 2022 Dec; 23(1):115-124. PubMed ID: 36454245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen.
    Gnädinger U; Poier D; Trombini C; Dabros M; Marti R
    Org Process Res Dev; 2024 May; 28(5):1860-1868. PubMed ID: 38783850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taming tosyl azide: the development of a scalable continuous diazo transfer process.
    Deadman BJ; O'Mahony RM; Lynch D; Crowley DC; Collins SG; Maguire AR
    Org Biomol Chem; 2016 Apr; 14(13):3423-31. PubMed ID: 26959187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equipment and analytical companies meeting continuous challenges. May 20-21, 2014 Continuous Manufacturing Symposium.
    Page T; Dubina H; Fillipi G; Guidat R; Patnaik S; Poechlauer P; Shering P; Guinn M; Mcdonnell P; Johnston C
    J Pharm Sci; 2015 Mar; 104(3):821-31. PubMed ID: 25448273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diazo compounds in continuous-flow technology.
    Müller ST; Wirth T
    ChemSusChem; 2015 Jan; 8(2):245-50. PubMed ID: 25488620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Large-Scale Cyanation Process Using Continuous Flow Chemistry En Route to the Synthesis of Remdesivir.
    Vieira T; Stevens AC; Chtchemelinine A; Gao D; Badalov P; Heumann L
    Org Process Res Dev; 2020 Oct; 24(10):2113-2121. PubMed ID: 37556265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The route from problem to solution in multistep continuous flow synthesis of pharmaceutical compounds.
    Bana P; Örkényi R; Lövei K; Lakó Á; Túrós GI; Éles J; Faigl F; Greiner I
    Bioorg Med Chem; 2017 Dec; 25(23):6180-6189. PubMed ID: 28087127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous Multistage Synthesis and Functionalization of Sub-100 nm Silica Nanoparticles in 3D-Printed Continuous Stirred-Tank Reactor Cascades.
    Lignos I; Ow H; Lopez JP; McCollum D; Zhang H; Imbrogno J; Shen Y; Chang S; Wang W; Jensen KF
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6699-6706. PubMed ID: 31922389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactor design and selection for effective continuous manufacturing of pharmaceuticals.
    Hu C
    J Flow Chem; 2021; 11(3):243-263. PubMed ID: 34026279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.