BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 32543943)

  • 21. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.
    Bruce CR; Thrush AB; Mertz VA; Bezaire V; Chabowski A; Heigenhauser GJ; Dyck DJ
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E99-E107. PubMed ID: 16464906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid Repression of ADP Transport by Palmitoyl-CoA Is Attenuated by Exercise Training in Humans: A Potential Mechanism to Decrease Oxidative Stress and Improve Skeletal Muscle Insulin Signaling.
    Ludzki A; Paglialunga S; Smith BK; Herbst EA; Allison MK; Heigenhauser GJ; Neufer PD; Holloway GP
    Diabetes; 2015 Aug; 64(8):2769-79. PubMed ID: 25845660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Increased platelet aggregation and fatty acid oxidation in diabetic rats.
    Iida N; Iida R; Takeyama N; Tanaka T
    Biochem Mol Biol Int; 1993 May; 30(1):177-85. PubMed ID: 8358330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Myocardial infarction in rats causes partial impairment in insulin response associated with reduced fatty acid oxidation and mitochondrial gene expression.
    Amorim PA; Nguyen TD; Shingu Y; Schwarzer M; Mohr FW; Schrepper A; Doenst T
    J Thorac Cardiovasc Surg; 2010 Nov; 140(5):1160-7. PubMed ID: 20850803
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overexpression of carnitine palmitoyltransferase I in skeletal muscle in vivo increases fatty acid oxidation and reduces triacylglycerol esterification.
    Bruce CR; Brolin C; Turner N; Cleasby ME; van der Leij FR; Cooney GJ; Kraegen EW
    Am J Physiol Endocrinol Metab; 2007 Apr; 292(4):E1231-7. PubMed ID: 17179390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle.
    Power GW; Newsholme EA
    J Nutr; 1997 Nov; 127(11):2142-50. PubMed ID: 9349840
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Robust intrinsic differences in mitochondrial respiration and H
    Robinson MM; Sather BK; Burney ER; Ehrlicher SE; Stierwalt HD; Franco MC; Newsom SA
    Am J Physiol Cell Physiol; 2019 Aug; 317(2):C339-C347. PubMed ID: 31091142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contribution of FAT/CD36 to the regulation of skeletal muscle fatty acid oxidation: an overview.
    Holloway GP; Luiken JJ; Glatz JF; Spriet LL; Bonen A
    Acta Physiol (Oxf); 2008 Dec; 194(4):293-309. PubMed ID: 18510711
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hepatic carnitine palmitoyltransferase-I has two independent inhibitory binding sites for regulation of fatty acid oxidation.
    Kashfi K; Mynatt RL; Cook GA
    Biochim Biophys Acta; 1994 May; 1212(2):245-52. PubMed ID: 8180250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. FAT/CD36-null mice reveal that mitochondrial FAT/CD36 is required to upregulate mitochondrial fatty acid oxidation in contracting muscle.
    Holloway GP; Jain SS; Bezaire V; Han XX; Glatz JF; Luiken JJ; Harper ME; Bonen A
    Am J Physiol Regul Integr Comp Physiol; 2009 Oct; 297(4):R960-7. PubMed ID: 19625692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats.
    Lou PH; Lucchinetti E; Scott KY; Huang Y; Gandhi M; Hersberger M; Clanachan AS; Lemieux H; Zaugg M
    Physiol Rep; 2017 Aug; 5(16):. PubMed ID: 28830979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insulin rapidly increases skeletal muscle mitochondrial ADP sensitivity in the absence of a high lipid environment.
    Brunetta HS; Petrick HL; Vachon B; Nunes EA; Holloway GP
    Biochem J; 2021 Jul; 478(13):2539-2553. PubMed ID: 34129667
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat.
    Warren BE; Lou PH; Lucchinetti E; Zhang L; Clanachan AS; Affolter A; Hersberger M; Zaugg M; Lemieux H
    Am J Physiol Endocrinol Metab; 2014 Mar; 306(6):E658-67. PubMed ID: 24425766
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the hepatic malonyl-CoA-carnitine palmitoyltransferase 1A partnership creates a metabolic switch allowing oxidation of de novo fatty acids.
    Akkaoui M; Cohen I; Esnous C; Lenoir V; Sournac M; Girard J; Prip-Buus C
    Biochem J; 2009 May; 420(3):429-38. PubMed ID: 19302064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.
    Barbosa MR; Sampaio IH; Teodoro BG; Sousa TA; Zoppi CC; Queiroz AL; Passos MA; Alberici LC; Teixeira FR; Manfiolli AO; Batista TM; Cappelli AP; Reis RI; Frasson D; Kettelhut IC; Parreiras-e-Silva LT; Costa-Neto CM; Carneiro EM; Curi R; Silveira LR
    Biochim Biophys Acta; 2013 Oct; 1832(10):1591-604. PubMed ID: 23643711
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aspects of long-chain acyl-COA metabolism.
    Tol VA
    Mol Cell Biochem; 1975 Apr; 7(1):19-31. PubMed ID: 1134497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Altered hepatic mitochondrial fatty acid oxidation and ketogenesis in endotoxic rats.
    Takeyama N; Itoh Y; Kitazawa Y; Tanaka T
    Am J Physiol; 1990 Oct; 259(4 Pt 1):E498-505. PubMed ID: 2221051
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects.
    Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Blood flow restricted resistance exercise and reductions in oxygen tension attenuate mitochondrial H
    Petrick HL; Pignanelli C; Barbeau PA; Churchward-Venne TA; Dennis KMJH; van Loon LJC; Burr JF; Goossens GH; Holloway GP
    J Physiol; 2019 Aug; 597(15):3985-3997. PubMed ID: 31194254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.