These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32544167)

  • 1. Coupling the circadian rhythms of population movement and the immune system in infectious disease modeling.
    Du Z; Holme P
    PLoS One; 2020; 15(6):e0234619. PubMed ID: 32544167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human mobility patterns predict divergent epidemic dynamics among cities.
    Dalziel BD; Pourbohloul B; Ellner SP
    Proc Biol Sci; 2013 Sep; 280(1766):20130763. PubMed ID: 23864593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling epidemic in metapopulation networks with heterogeneous diffusion rates.
    Liu MX; Zhang J; Li ZG; Sun YZ
    Math Biosci Eng; 2019 Aug; 16(6):7085-7097. PubMed ID: 31698604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Invasion threshold in structured populations with recurrent mobility patterns.
    Balcan D; Vespignani A
    J Theor Biol; 2012 Jan; 293():87-100. PubMed ID: 22019505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment.
    Vazquez-Prokopec GM; Bisanzio D; Stoddard ST; Paz-Soldan V; Morrison AC; Elder JP; Ramirez-Paredes J; Halsey ES; Kochel TJ; Scott TW; Kitron U
    PLoS One; 2013; 8(4):e58802. PubMed ID: 23577059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia.
    Barrios E; Lee S; Vasilieva O
    J Theor Biol; 2018 Sep; 453():14-39. PubMed ID: 29775680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.
    Colizza V; Vespignani A
    J Theor Biol; 2008 Apr; 251(3):450-67. PubMed ID: 18222487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling human mobility responses to the large-scale spreading of infectious diseases.
    Meloni S; Perra N; Arenas A; Gómez S; Moreno Y; Vespignani A
    Sci Rep; 2011; 1():62. PubMed ID: 22355581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of mobility network properties on predicted epidemic dynamics in Dhaka and Bangkok.
    Brown TS; Engø-Monsen K; Kiang MV; Mahmud AS; Maude RJ; Buckee CO
    Epidemics; 2021 Jun; 35():100441. PubMed ID: 33667878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory conflict disrupts circadian rhythms in the sea anemone
    Berger CA; Tarrant AM
    Elife; 2023 Apr; 12():. PubMed ID: 37022138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex social contagion makes networks more vulnerable to disease outbreaks.
    Campbell E; Salathé M
    Sci Rep; 2013; 3():1905. PubMed ID: 23712758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidemiological implications of mobility between a large urban centre and smaller satellite cities.
    Arino J; Portet S
    J Math Biol; 2015 Nov; 71(5):1243-65. PubMed ID: 25586236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased infection severity in downstream cities in infectious disease transmission and tourists surveillance analysis.
    Zhang N; Zhao P; Li Y
    J Theor Biol; 2019 Jun; 470():20-29. PubMed ID: 30851275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. For Whom the Clock Ticks: Clinical Chronobiology for Infectious Diseases.
    Diallo AB; Coiffard B; Leone M; Mezouar S; Mege JL
    Front Immunol; 2020; 11():1457. PubMed ID: 32733482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the infection period distribution on the epidemic spread in a metapopulation model.
    Vergu E; Busson H; Ezanno P
    PLoS One; 2010 Feb; 5(2):e9371. PubMed ID: 20195473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the use of human mobility proxies for modeling epidemics.
    Tizzoni M; Bajardi P; Decuyper A; Kon Kam King G; Schneider CM; Blondel V; Smoreda Z; González MC; Colizza V
    PLoS Comput Biol; 2014 Jul; 10(7):e1003716. PubMed ID: 25010676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Limits to forecasting precision for outbreaks of directly transmitted diseases.
    Drake JM
    PLoS Med; 2006 Jan; 3(1):e3. PubMed ID: 16435887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Clocks in the Immune System.
    Labrecque N; Cermakian N
    J Biol Rhythms; 2015 Aug; 30(4):277-90. PubMed ID: 25900041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration.
    Jesse M; Ezanno P; Davis S; Heesterbeek JA
    J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling epidemics dynamics on heterogenous networks.
    Ben-Zion Y; Cohen Y; Shnerb NM
    J Theor Biol; 2010 May; 264(2):197-204. PubMed ID: 20117115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.