BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32544181)

  • 1. Development and immunopathological characteristics of an Alternaria-induced chronic rhinosinusitis mouse model.
    Shin SH; Ye MK; Lee DW; Chae MH; Choi SY
    PLoS One; 2020; 15(6):e0234731. PubMed ID: 32544181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Histological and immunological observations of bacterial and allergic chronic rhinosinusitis in the mouse.
    Wang H; Lu X; Cao PP; Chu Y; Long XB; Zhang XH; You XJ; Cui YH; Liu Z
    Am J Rhinol; 2008; 22(4):343-8. PubMed ID: 18702895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immunomodulative Effects of
    Shin SH; Ye MK; Lee DW; Che MH
    Molecules; 2020 Oct; 25(19):. PubMed ID: 33023110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-17A-induced inflammation does not influence the development of nasal polyps in murine model.
    Hong SL; Zhang YL; Kim SW; Kim DW; Cho SH; Chang YS; Lee CH; Rhee CS
    Int Forum Allergy Rhinol; 2015 May; 5(5):363-70. PubMed ID: 25754984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Aspergillus protease with ovalbumin-induced allergic chronic rhinosinusitis model in the mouse.
    Kim JH; Yi JS; Gong CH; Jang YJ
    Am J Rhinol Allergy; 2014; 28(6):465-70. PubMed ID: 25514482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a novel high-dose ovalbumin-induced murine model of allergic sinonasal inflammation.
    Mendiola M; Tharakan A; Chen M; Asempa T; Lane AP; Ramanathan M
    Int Forum Allergy Rhinol; 2016 Sep; 6(9):964-72. PubMed ID: 27060366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nasal Epithelial Cells Activated with
    Shin SH; Ye MK; Lee DW; Chae MH; Han BD
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32294933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhinovirus infection in murine chronic allergic rhinosinusitis model.
    Lee SB; Song JA; Choi GE; Kim HS; Jang YJ
    Int Forum Allergy Rhinol; 2016 Nov; 6(11):1131-1138. PubMed ID: 27348296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of STAT6 by intranasal allergens correlated with the development of eosinophilic chronic rhinosinusitis in a mouse model.
    Wei H; Xu L; Sun P; Xing H; Zhu Z; Liu J
    Int J Immunopathol Pharmacol; 2022; 36():3946320221109529. PubMed ID: 35726645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mouse model of Aspergillus and Alternaria induced rhinosinusitis.
    Ahn BH; Park YH; Shin SH
    Auris Nasus Larynx; 2009 Aug; 36(4):422-6. PubMed ID: 19084360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Immuno-Modulatory Activities of Pentaherbs Formula on Ovalbumin-Induced Allergic Rhinitis Mice via the Activation of Th1 and Treg Cells and Inhibition of Th2 and Th17 Cells.
    Li P; Tsang MS; Kan LL; Hou T; Hon SS; Chan BC; Chu IM; Lam CW; Leung PC; Wong CK
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-inflammatory effect of bee venom in an allergic chronic rhinosinusitis mouse model.
    Shin SH; Ye MK; Choi SY; Park KK
    Mol Med Rep; 2018 May; 17(5):6632-6638. PubMed ID: 29532888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a mouse model of eosinophilic chronic rhinosinusitis with nasal polyp by nasal instillation of an Aspergillus protease and ovalbumin.
    Kim HC; Lim JY; Kim S; Kim JH; Jang YJ
    Eur Arch Otorhinolaryngol; 2017 Nov; 274(11):3899-3906. PubMed ID: 28828551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alpha-linolenic acid improves nasal mucosa epithelial barrier function in allergic rhinitis by arresting CD4
    Ding Y; Wang Y; Zhang Y; Dang B; Hu S; Zhao C; Huang Y; Zheng G; Ma T; Zhang T
    Phytomedicine; 2023 Jul; 116():154825. PubMed ID: 37178572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-allergic effect of bee venom in an allergic rhinitis mouse model.
    Shin SH; Kim YH; Kim JK; Park KK
    Biol Pharm Bull; 2014; 37(8):1295-300. PubMed ID: 25087951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A synthetic glycosaminoglycan reduces sinonasal inflammation in a murine model of chronic rhinosinusitis.
    Alt JA; Lee WY; Davis BM; Savage JR; Kennedy TP; Prestwich GD; Pulsipher A
    PLoS One; 2018; 13(9):e0204709. PubMed ID: 30252910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of resiquimod in an ovalbumin-induced allergic rhinitis model.
    Qu S; Qin T; Li M; Zhang S; Ye L; Wei J; Fan H; Chen B
    Int Immunopharmacol; 2018 Jun; 59():233-242. PubMed ID: 29665497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Preliminary Study in Immune Response of BALB/c and C57BL/6 Mice with a Locally Allergic Rhinitis Model.
    Zhang Q; Zhu W; Zou Z; Yu W; Gao P; Wang Y; Chen J
    Am J Rhinol Allergy; 2023 Jul; 37(4):410-418. PubMed ID: 36797980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics of lower airway inflammatory changes in the minimal persistent inflammation of allergic rhinitis in mice.
    Xu J; Gao L; Yao H; Zhang R; Liu N; Wang L; Liu E; Dai J; Fu Z
    J Asthma; 2018 Nov; 55(11):1187-1196. PubMed ID: 29278941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a novel, papain-inducible murine model of eosinophilic rhinosinusitis.
    Tharakan A; Dobzanski A; London NR; Khalil SM; Surya N; Lane AP; Ramanathan M
    Int Forum Allergy Rhinol; 2018 Apr; 8(4):513-521. PubMed ID: 29341450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.