These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32544339)

  • 1. Self-Propulsion of Janus Particles near a Brush-Functionalized Substrate.
    Heidari M; Bregulla A; Landin SM; Cichos F; von Klitzing R
    Langmuir; 2020 Jul; 36(27):7775-7780. PubMed ID: 32544339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoresponsive Polymer Brush Modulation on the Direction of Motion of Phoretically Driven Janus Micromotors.
    Ji Y; Lin X; Zhang H; Wu Y; Li J; He Q
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4184-4188. PubMed ID: 30701642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam.
    Jiang HR; Yoshinaga N; Sano M
    Phys Rev Lett; 2010 Dec; 105(26):268302. PubMed ID: 21231718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Propulsion Mechanism of Active Janus Particles in Near-Critical Binary Mixtures.
    Samin S; van Roij R
    Phys Rev Lett; 2015 Oct; 115(18):188305. PubMed ID: 26565508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced self-thermophoresis of Janus spheroidal nanoparticles.
    Miloh T; Nagler J
    Electrophoresis; 2018 Oct; 39(19):2417-2424. PubMed ID: 30010202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermophoretic Motion of a Sphere Parallel to an Insulated Plane.
    Chen SH
    J Colloid Interface Sci; 2000 Apr; 224(1):63-75. PubMed ID: 10708494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward Understanding of Self-Electrophoretic Propulsion under Realistic Conditions: From Bulk Reactions to Confinement Effects.
    Kuron M; Kreissl P; Holm C
    Acc Chem Res; 2018 Dec; 51(12):2998-3005. PubMed ID: 30417644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patchy micelles based on coassembly of block copolymer chains and block copolymer brushes on silica particles.
    Zhu S; Li ZW; Zhao H
    Langmuir; 2015 Apr; 31(14):4129-36. PubMed ID: 25811763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface hydrophilicity-mediated migration of nano/microparticles under temperature gradient in a confined space.
    Xu H; Zheng X; Shi X
    J Colloid Interface Sci; 2023 May; 637():489-499. PubMed ID: 36724663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combined Optical and Chemical Control of a Microsized Photofueled Janus Particle.
    Simoncelli S; Summer J; Nedev S; Kühler P; Feldmann J
    Small; 2016 Jun; 12(21):2854-8. PubMed ID: 27028413
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gas Bubbles Stabilized by Janus Particles with Varying Hydrophilic-Hydrophobic Surface Characteristics.
    Fujii S; Yokoyama Y; Nakayama S; Ito M; Yusa SI; Nakamura Y
    Langmuir; 2018 Jan; 34(3):933-942. PubMed ID: 28981288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer segmental dynamics near the interface of silica particles in the particle/polymer composites.
    Park G; Lee H; Sim JH; Kim A; Kim M; Paeng K
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):256-264. PubMed ID: 36084442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mimicking bubble use in nature: propulsion of Janus particles due to hydrophobic-hydrophilic interactions.
    Pinchasik BE; Möhwald H; Skirtach AG
    Small; 2014 Jul; 10(13):2670-7. PubMed ID: 24664591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis.
    Wang S; Wu N
    Langmuir; 2014 Apr; 30(12):3477-86. PubMed ID: 24593832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow fields around pinned self-thermophoretic microswimmers under confinement.
    Bregulla AP; Cichos F
    J Chem Phys; 2019 Jul; 151(4):044706. PubMed ID: 31370563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pick up, move and release of nanoparticles utilizing co-non-solvency of PNIPAM brushes.
    Yu Y; Lopez de la Cruz RA; Kieviet BD; Gojzewski H; Pons A; Julius Vancso G; de Beer S
    Nanoscale; 2017 Jan; 9(4):1670-1675. PubMed ID: 28084477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-dependent control of particle motion through surface interactions with patterned polymer brush surfaces.
    Dunderdale G; Howse J; Fairclough P
    Langmuir; 2012 Sep; 28(36):12955-61. PubMed ID: 22891947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: synthesis and self-assembly.
    Liu G; Tian J; Zhang X; Zhao H
    Chem Asian J; 2014 Sep; 9(9):2597-603. PubMed ID: 25044923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.