These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 32544378)

  • 41. The potential influence of morphology on the evolutionary divergence of an acoustic signal.
    Pitchers WR; Klingenberg CP; Tregenza T; Hunt J; Dworkin I
    J Evol Biol; 2014 Oct; 27(10):2163-76. PubMed ID: 25223712
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Socially flexible female choice differs among populations of the Pacific field cricket: geographical variation in the interaction coefficient psi (Ψ).
    Bailey NW; Zuk M
    Proc Biol Sci; 2012 Sep; 279(1742):3589-96. PubMed ID: 22648156
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Responses of intended and unintended receivers to a novel sexual signal suggest clandestine communication.
    Tinghitella RM; Broder ED; Gallagher JH; Wikle AW; Zonana DM
    Nat Commun; 2021 Feb; 12(1):797. PubMed ID: 33542210
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal genomics in Hawaiian crickets reveals compensatory intragenomic coadaptation during adaptive evolution.
    Zhang X; Blaxter M; Wood JMD; Tracey A; McCarthy S; Thorpe P; Rayner JG; Zhang S; Sikkink KL; Balenger SL; Bailey NW
    Nat Commun; 2024 Jun; 15(1):5001. PubMed ID: 38866741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sex differences in metabolic rates in field crickets and their dipteran parasitoids.
    Kolluru GR; Chappell MA; Zuk M
    J Comp Physiol B; 2004 Nov; 174(8):641-8. PubMed ID: 15538585
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Island hopping introduces Polynesian field crickets to novel environments, genetic bottlenecks and rapid evolution.
    Tinghitella RM; Zuk M; Beveridge M; Simmons LW
    J Evol Biol; 2011 Jun; 24(6):1199-211. PubMed ID: 21418117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lesions of abdominal connectives reveal a conserved organization of the calling song central pattern generator (CPG) network in different cricket species.
    Lin CC; Hedwig B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2021 Jul; 207(4):533-552. PubMed ID: 34097086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Calling Behavior of Male Acheta domesticus Crickets Infected with Paragordius varius (Nematomorpha: Gordiida).
    Barquin A; McGehee B; Sedam RT; Gordy WL; Hanelt B; de Valdez MR
    J Parasitol; 2015 Aug; 101(4):393-7. PubMed ID: 25978343
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Socially flexible female choice and premating isolation in field crickets (Teleogryllus spp.).
    Bailey NW; Macleod E
    J Evol Biol; 2014 Jan; 27(1):170-80. PubMed ID: 24330452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Strong, silent types: the rapid, adaptive disappearance of a sexual signal.
    Bretman A; Tregenza T
    Trends Ecol Evol; 2007 May; 22(5):226-8. PubMed ID: 17292996
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lovesick: immunological costs of mating to male sagebrush crickets.
    Leman JC; Weddle CB; Gershman SN; Kerr AM; Ower GD; St John JM; Vogel LA; Sakaluk SK
    J Evol Biol; 2009 Jan; 22(1):163-71. PubMed ID: 19127612
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eavesdropping parasitoids do not cause the evolution of less conspicuous signalling behaviour in a field cricket.
    Beckers OM; Wagner WE
    Anim Behav; 2012 Dec; 84(6):1457-1462. PubMed ID: 23888083
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution of a Communication System by Sensory Exploitation of Startle Behavior.
    Ter Hofstede HM; Schöneich S; Robillard T; Hedwig B
    Curr Biol; 2015 Dec; 25(24):3245-52. PubMed ID: 26687622
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae).
    Montealegre-Z F; Jonsson T; Robert D
    J Exp Biol; 2011 Jun; 214(Pt 12):2105-17. PubMed ID: 21613528
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A corollary discharge mechanism modulates central auditory processing in singing crickets.
    Poulet JF; Hedwig B
    J Neurophysiol; 2003 Mar; 89(3):1528-40. PubMed ID: 12626626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Behavioural mechanisms of sexual isolation involving multiple modalities and their inheritance.
    Moran PA; Hunt J; Mitchell C; Ritchie MG; Bailey NW
    J Evol Biol; 2019 Mar; 32(3):243-258. PubMed ID: 30485577
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phonotaxis in flying crickets. II. Physiological mechanisms of two-tone suppression of the high frequency avoidance steering behavior by the calling song.
    Nolen TG; Hoy RR
    J Comp Physiol A; 1986 Oct; 159(4):441-56. PubMed ID: 3783497
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mate Choice Behavior of Female Field Crickets Is Not Affected by Exposure to Heterospecific Calling Songs.
    Kuriwada T; Kawasaki R; Kuwano A; Reddy GVP
    Environ Entomol; 2020 Jun; 49(3):561-565. PubMed ID: 32270174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of developmental environment on signal-preference coupling in a Hawaiian cricket.
    Grace JL; Shaw KL
    Evolution; 2004 Jul; 58(7):1627-33. PubMed ID: 15341166
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multivariate sexual selection in a rapidly evolving speciation phenotype.
    Oh KP; Shaw KL
    Proc Biol Sci; 2013 Jun; 280(1761):20130482. PubMed ID: 23760640
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.