BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32544385)

  • 1. CBASS Immunity Uses CARF-Related Effectors to Sense 3'-5'- and 2'-5'-Linked Cyclic Oligonucleotide Signals and Protect Bacteria from Phage Infection.
    Lowey B; Whiteley AT; Keszei AFA; Morehouse BR; Mathews IT; Antine SP; Cabrera VJ; Kashin D; Niemann P; Jain M; Schwede F; Mekalanos JJ; Shao S; Lee ASY; Kranzusch PJ
    Cell; 2020 Jul; 182(1):38-49.e17. PubMed ID: 32544385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific recognition of cyclic oligonucleotides by Cap4 for phage infection.
    Chang JJ; You BJ; Tien N; Wang YC; Yang CS; Hou MH; Chen Y
    Int J Biol Macromol; 2023 May; 237():123656. PubMed ID: 36796558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of CD-NTase nucleotide selection in CBASS anti-phage defense.
    Govande AA; Duncan-Lowey B; Eaglesham JB; Whiteley AT; Kranzusch PJ
    Cell Rep; 2021 Jun; 35(9):109206. PubMed ID: 34077735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CBASS phage defense and evolution of antiviral nucleotide signaling.
    Duncan-Lowey B; Kranzusch PJ
    Curr Opin Immunol; 2022 Feb; 74():156-163. PubMed ID: 35123147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Mechanism of a Cyclic Trinucleotide-Activated Bacterial Endonuclease Mediating Bacteriophage Immunity.
    Lau RK; Ye Q; Birkholz EA; Berg KR; Patel L; Mathews IT; Watrous JD; Ego K; Whiteley AT; Lowey B; Mekalanos JJ; Kranzusch PJ; Jain M; Pogliano J; Corbett KD
    Mol Cell; 2020 Feb; 77(4):723-733.e6. PubMed ID: 31932164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The arms race between bacteria CBASS and bacteriophages.
    Wang L; Zhang L
    Front Immunol; 2023; 14():1224341. PubMed ID: 37575224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A large-scale type I CBASS antiphage screen identifies the phage prohead protease as a key determinant of immune activation and evasion.
    Richmond-Buccola D; Hobbs SJ; Garcia JM; Toyoda H; Gao J; Shao S; Lee ASY; Kranzusch PJ
    Cell Host Microbe; 2024 Jun; ():. PubMed ID: 38917809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Viral sponges sequester nucleotide signals to inactivate immunity.
    Richmond-Buccola D; Kranzusch PJ
    Trends Microbiol; 2023 Jun; 31(6):552-553. PubMed ID: 37100632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effector-mediated membrane disruption controls cell death in CBASS antiphage defense.
    Duncan-Lowey B; McNamara-Bordewick NK; Tal N; Sorek R; Kranzusch PJ
    Mol Cell; 2021 Dec; 81(24):5039-5051.e5. PubMed ID: 34784509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary and functional classification of the CARF domain superfamily, key sensors in prokaryotic antivirus defense.
    Makarova KS; Timinskas A; Wolf YI; Gussow AB; Siksnys V; Venclovas Č; Koonin EV
    Nucleic Acids Res; 2020 Sep; 48(16):8828-8847. PubMed ID: 32735657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HORMA Domain Proteins and a Trip13-like ATPase Regulate Bacterial cGAS-like Enzymes to Mediate Bacteriophage Immunity.
    Ye Q; Lau RK; Mathews IT; Birkholz EA; Watrous JD; Azimi CS; Pogliano J; Jain M; Corbett KD
    Mol Cell; 2020 Feb; 77(4):709-722.e7. PubMed ID: 31932165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial cGAS-like enzymes produce 2',3'-cGAMP to activate an ion channel that restricts phage replication.
    Tak U; Walth P; Whiteley AT
    bioRxiv; 2023 Jul; ():. PubMed ID: 37546940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage anti-CBASS and anti-Pycsar nucleases subvert bacterial immunity.
    Hobbs SJ; Wein T; Lu A; Morehouse BR; Schnabel J; Leavitt A; Yirmiya E; Sorek R; Kranzusch PJ
    Nature; 2022 May; 605(7910):522-526. PubMed ID: 35395152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An E1-E2 fusion protein primes antiviral immune signalling in bacteria.
    Ledvina HE; Ye Q; Gu Y; Sullivan AE; Quan Y; Lau RK; Zhou H; Corbett KD; Whiteley AT
    Nature; 2023 Apr; 616(7956):319-325. PubMed ID: 36755092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacteriophages inhibit and evade cGAS-like immune function in bacteria.
    Huiting E; Cao X; Ren J; Athukoralage JS; Luo Z; Silas S; An N; Carion H; Zhou Y; Fraser JS; Feng Y; Bondy-Denomy J
    Cell; 2023 Feb; 186(4):864-876.e21. PubMed ID: 36750095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. cGAS-STING: insight on the evolution of a primordial antiviral signaling cassette.
    Cai H; Imler JL
    Fac Rev; 2021; 10():54. PubMed ID: 34195693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CD-NTase family member MB21D2 promotes cGAS-mediated antiviral and antitumor immunity.
    Liu H; Yan Z; Zhu D; Xu H; Liu F; Chen T; Zhang H; Zheng Y; Liu B; Zhang L; Zhao W; Gao C
    Cell Death Differ; 2023 Apr; 30(4):992-1004. PubMed ID: 36681781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.
    Millman A; Melamed S; Amitai G; Sorek R
    Nat Microbiol; 2020 Dec; 5(12):1608-1615. PubMed ID: 32839535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STING cyclic dinucleotide sensing originated in bacteria.
    Morehouse BR; Govande AA; Millman A; Keszei AFA; Lowey B; Ofir G; Shao S; Sorek R; Kranzusch PJ
    Nature; 2020 Oct; 586(7829):429-433. PubMed ID: 32877915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CBASS to cGAS-STING: The Origins and Mechanisms of Nucleotide Second Messenger Immune Signaling.
    Slavik KM; Kranzusch PJ
    Annu Rev Virol; 2023 Sep; 10(1):423-453. PubMed ID: 37380187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.