BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32544385)

  • 21. cGAS and CD-NTase enzymes: structure, mechanism, and evolution.
    Kranzusch PJ
    Curr Opin Struct Biol; 2019 Dec; 59():178-187. PubMed ID: 31593902
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CRISPR effector Cam1 mediates membrane depolarization for phage defence.
    Baca CF; Yu Y; Rostøl JT; Majumder P; Patel DJ; Marraffini LA
    Nature; 2024 Jan; 625(7996):797-804. PubMed ID: 38200316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of CBASS Cap5 endonuclease immune effector by cyclic nucleotides.
    Rechkoblit O; Sciaky D; Kreitler DF; Buku A; Kottur J; Aggarwal AK
    Nat Struct Mol Biol; 2024 May; 31(5):767-776. PubMed ID: 38321146
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phage defence system CBASS is regulated by a prokaryotic E2 enzyme that imitates the ubiquitin pathway.
    Yan Y; Xiao J; Huang F; Xian W; Yu B; Cheng R; Wu H; Lu X; Wang X; Huang W; Li J; Oyejobi GK; Robinson CV; Wu H; Wu D; Liu X; Wang L; Zhu B
    Nat Microbiol; 2024 Jun; 9(6):1566-1578. PubMed ID: 38649411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA
    Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM
    J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bacterial cGAS-like enzymes synthesize diverse nucleotide signals.
    Whiteley AT; Eaglesham JB; de Oliveira Mann CC; Morehouse BR; Lowey B; Nieminen EA; Danilchanka O; King DS; Lee ASY; Mekalanos JJ; Kranzusch PJ
    Nature; 2019 Mar; 567(7747):194-199. PubMed ID: 30787435
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial cGAS senses a viral RNA to initiate immunity.
    Banh DV; Roberts CG; Morales-Amador A; Berryhill BA; Chaudhry W; Levin BR; Brady SF; Marraffini LA
    Nature; 2023 Nov; 623(7989):1001-1008. PubMed ID: 37968393
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
    Steens JA; Salazar CRP; Staals RHJ
    Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure and functional implication of bacterial STING.
    Ko TP; Wang YC; Yang CS; Hou MH; Chen CJ; Chiu YF; Chen Y
    Nat Commun; 2022 Jan; 13(1):26. PubMed ID: 35013136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial origins of cyclic nucleotide-activated antiviral immune signaling.
    Patel DJ; Yu Y; Jia N
    Mol Cell; 2022 Dec; 82(24):4591-4610. PubMed ID: 36460008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phage anti-CBASS protein simultaneously sequesters cyclic trinucleotides and dinucleotides.
    Cao X; Xiao Y; Huiting E; Cao X; Li D; Ren J; Fedorova I; Wang H; Guan L; Wang Y; Li L; Bondy-Denomy J; Feng Y
    Mol Cell; 2024 Jan; 84(2):375-385.e7. PubMed ID: 38103556
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bacteriophage antidefense genes that neutralize TIR and STING immune responses.
    Ho P; Chen Y; Biswas S; Canfield E; Abdolvahabi A; Feldman DE
    Cell Rep; 2023 Apr; 42(4):112305. PubMed ID: 36952342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genomic analyses reveal a vast, novel network of nucleotide-centric systems in biological conflicts, immunity and signaling.
    Burroughs AM; Zhang D; Schäffer DE; Iyer LM; Aravind L
    Nucleic Acids Res; 2015 Dec; 43(22):10633-54. PubMed ID: 26590262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CARF and WYL domains: ligand-binding regulators of prokaryotic defense systems.
    Makarova KS; Anantharaman V; Grishin NV; Koonin EV; Aravind L
    Front Genet; 2014; 5():102. PubMed ID: 24817877
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3',2'-cGAMP as the second messenger.
    Fatma S; Chakravarti A; Zeng X; Huang RH
    Nat Commun; 2021 Nov; 12(1):6381. PubMed ID: 34737303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Cyclic Oligoadenylate Signaling Pathway of Type III CRISPR-Cas Systems.
    Huang F; Zhu B
    Front Microbiol; 2020; 11():602789. PubMed ID: 33552016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.
    Athukoralage JS; White MF
    Annu Rev Virol; 2022 Sep; 9(1):451-468. PubMed ID: 35567297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Convergent mutations in phage virion assembly proteins enable evasion of Type I CBASS immunity.
    Richmond-Buccola D; Hobbs SJ; Garcia JM; Toyoda H; Gao J; Shao S; Lee ASY; Kranzusch PJ
    bioRxiv; 2023 May; ():. PubMed ID: 37292831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of bacterial immune signaling by a WYL domain transcription factor.
    Blankenchip CL; Nguyen JV; Lau RK; Ye Q; Gu Y; Corbett KD
    Nucleic Acids Res; 2022 May; 50(9):5239-5250. PubMed ID: 35536256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.