BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 32544423)

  • 1. Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies.
    Chen H; Chidboy MA; Robinson JF
    Reprod Toxicol; 2020 Sep; 96():102-113. PubMed ID: 32544423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays.
    Sachana M; Willett C; Pistollato F; Bal-Price A
    Reprod Toxicol; 2021 Aug; 103():159-170. PubMed ID: 34147625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays.
    Pitzer EM; Shafer TJ; Herr DW
    Neurotoxicology; 2023 Dec; 99():184-194. PubMed ID: 37866692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An industry perspective: A streamlined screening strategy using alternative models for chemical assessment of developmental neurotoxicity.
    Li J; Settivari R; LeBaron MJ; Marty MS
    Neurotoxicology; 2019 Jul; 73():17-30. PubMed ID: 30786249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. International STakeholder NETwork (ISTNET): creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes.
    Bal-Price A; Crofton KM; Leist M; Allen S; Arand M; Buetler T; Delrue N; FitzGerald RE; Hartung T; Heinonen T; Hogberg H; Bennekou SH; Lichtensteiger W; Oggier D; Paparella M; Axelstad M; Piersma A; Rached E; Schilter B; Schmuck G; Stoppini L; Tongiorgi E; Tiramani M; Monnet-Tschudi F; Wilks MF; Ylikomi T; Fritsche E
    Arch Toxicol; 2015 Feb; 89(2):269-87. PubMed ID: 25618548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept.
    Pistollato F; de Gyves EM; Carpi D; Bopp SK; Nunes C; Worth A; Bal-Price A
    Environ Health; 2020 Feb; 19(1):23. PubMed ID: 32093744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods.
    Bal-Price A; Pistollato F; Sachana M; Bopp SK; Munn S; Worth A
    Toxicol Appl Pharmacol; 2018 Sep; 354():7-18. PubMed ID: 29476865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards in vitro DT/DNT testing: Assaying chemical susceptibility in early differentiating NT2 cells.
    Menzner AK; Abolpour Mofrad S; Friedrich O; Gilbert DF
    Toxicology; 2015 Dec; 338():69-76. PubMed ID: 26498558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity.
    Hughes S; Hessel EVS
    Crit Rev Toxicol; 2024 May; 54(5):330-343. PubMed ID: 38832580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: example lists and criteria for their selection and use.
    Aschner M; Ceccatelli S; Daneshian M; Fritsche E; Hasiwa N; Hartung T; Hogberg HT; Leist M; Li A; Mundi WR; Padilla S; Piersma AH; Bal-Price A; Seiler A; Westerink RH; Zimmer B; Lein PJ
    ALTEX; 2017; 34(1):49-74. PubMed ID: 27452664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of gene expression responses in rat whole embryo culture and in vivo: time-dependent retinoic acid-induced teratogenic response.
    Robinson JF; Verhoef A; Pennings JL; Pronk TE; Piersma AH
    Toxicol Sci; 2012 Mar; 126(1):242-54. PubMed ID: 22262565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro.
    Klose J; Li L; Pahl M; Bendt F; Hübenthal U; Jüngst C; Petzsch P; Schauss A; Köhrer K; Leung PC; Wang CC; Koch K; Tigges J; Fan X; Fritsche E
    Cell Biol Toxicol; 2023 Feb; 39(1):319-343. PubMed ID: 35701726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Omic Analyses Identify Pathways and Transcriptomic Regulators Associated With Chemical Alterations of In Vitro Neural Network Formation.
    Marable CA; Frank CL; Seim RF; Hester S; Henderson WM; Chorley B; Shafer TJ
    Toxicol Sci; 2022 Feb; 186(1):118-133. PubMed ID: 34927697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity.
    Bal-Price A; Hogberg HT; Crofton KM; Daneshian M; FitzGerald RE; Fritsche E; Heinonen T; Hougaard Bennekou S; Klima S; Piersma AH; Sachana M; Shafer TJ; Terron A; Monnet-Tschudi F; Viviani B; Waldmann T; Westerink RHS; Wilks MF; Witters H; Zurich MG; Leist M
    ALTEX; 2018; 35(3):306-352. PubMed ID: 29485663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a science-based testing strategy to identify maternal thyroid hormone imbalance and neurodevelopmental effects in the progeny - part II: how can key events of relevant adverse outcome pathways be addressed in toxicological assessments?
    Marty S; Beekhuijzen M; Charlton A; Hallmark N; Hannas BR; Jacobi S; Melching-Kollmuss S; Sauer UG; Sheets LP; Strauss V; Urbisch D; Botham PA; van Ravenzwaay B
    Crit Rev Toxicol; 2021 Apr; 51(4):328-358. PubMed ID: 34074207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network.
    Spînu N; Cronin MTD; Lao J; Bal-Price A; Campia I; Enoch SJ; Madden JC; Mora Lagares L; Novič M; Pamies D; Scholz S; Villeneuve DL; Worth AP
    Comput Toxicol; 2022 Feb; 21():100206. PubMed ID: 35211661
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children.
    Sachana M; Rolaki A; Bal-Price A
    Toxicol Appl Pharmacol; 2018 Sep; 354():153-175. PubMed ID: 29524501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An expert-driven literature review of "negative" chemicals for developmental neurotoxicity (DNT) in vitro assay evaluation.
    Martin MM; Baker NC; Boyes WK; Carstens KE; Culbreth ME; Gilbert ME; Harrill JA; Nyffeler J; Padilla S; Friedman KP; Shafer TJ
    Neurotoxicol Teratol; 2022; 93():107117. PubMed ID: 35908584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances and current challenges of new approach methodologies in developmental and adult neurotoxicity testing.
    Serafini MM; Sepehri S; Midali M; Stinckens M; Biesiekierska M; Wolniakowska A; Gatzios A; Rundén-Pran E; Reszka E; Marinovich M; Vanhaecke T; Roszak J; Viviani B; SenGupta T
    Arch Toxicol; 2024 May; 98(5):1271-1295. PubMed ID: 38480536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How neurobehavior and brain development in alternative whole-organism models can contribute to prediction of developmental neurotoxicity.
    Collins ES; Hessel EVS; Hughes S
    Neurotoxicology; 2024 May; 102():48-57. PubMed ID: 38552718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.