These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
599 related articles for article (PubMed ID: 32544777)
21. Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton. Sapkota BB; Popescu S; Rajan N; Leon RG; Reberg-Horton C; Mirsky S; Bagavathiannan MV Sci Rep; 2022 Nov; 12(1):19580. PubMed ID: 36379963 [TBL] [Abstract][Full Text] [Related]
22. A REAL-TIME MEDICAL ULTRASOUND SIMULATOR BASED ON A GENERATIVE ADVERSARIAL NETWORK MODEL. Peng B; Huang X; Wang S; Jiang J Proc Int Conf Image Proc; 2019 Sep; 2019():4629-4633. PubMed ID: 33795977 [TBL] [Abstract][Full Text] [Related]
23. Assessment of Generative Adversarial Networks Model for Synthetic Optical Coherence Tomography Images of Retinal Disorders. Zheng C; Xie X; Zhou K; Chen B; Chen J; Ye H; Li W; Qiao T; Gao S; Yang J; Liu J Transl Vis Sci Technol; 2020 May; 9(2):29. PubMed ID: 32832202 [TBL] [Abstract][Full Text] [Related]
24. 2S-BUSGAN: A Novel Generative Adversarial Network for Realistic Breast Ultrasound Image with Corresponding Tumor Contour Based on Small Datasets. Luo J; Zhang H; Zhuang Y; Han L; Chen K; Hua Z; Li C; Lin J Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896706 [TBL] [Abstract][Full Text] [Related]
25. Creating High Fidelity Synthetic Pelvis Radiographs Using Generative Adversarial Networks: Unlocking the Potential of Deep Learning Models Without Patient Privacy Concerns. Khosravi B; Rouzrokh P; Mickley JP; Faghani S; Larson AN; Garner HW; Howe BM; Erickson BJ; Taunton MJ; Wyles CC J Arthroplasty; 2023 Oct; 38(10):2037-2043.e1. PubMed ID: 36535448 [TBL] [Abstract][Full Text] [Related]
26. Generating 3D TOF-MRA volumes and segmentation labels using generative adversarial networks. Subramaniam P; Kossen T; Ritter K; Hennemuth A; Hildebrand K; Hilbert A; Sobesky J; Livne M; Galinovic I; Khalil AA; Fiebach JB; Frey D; Madai VI Med Image Anal; 2022 May; 78():102396. PubMed ID: 35231850 [TBL] [Abstract][Full Text] [Related]
27. Utility of deep learning networks for the generation of artificial cardiac magnetic resonance images in congenital heart disease. Diller GP; Vahle J; Radke R; Vidal MLB; Fischer AJ; Bauer UMM; Sarikouch S; Berger F; Beerbaum P; Baumgartner H; Orwat S; BMC Med Imaging; 2020 Oct; 20(1):113. PubMed ID: 33032536 [TBL] [Abstract][Full Text] [Related]
28. Comparison of measurements of medial gastrocnemius architectural parameters from ultrasound and diffusion tensor images. Bolsterlee B; Veeger HE; van der Helm FC; Gandevia SC; Herbert RD J Biomech; 2015 Apr; 48(6):1133-40. PubMed ID: 25682540 [TBL] [Abstract][Full Text] [Related]
29. On the usability of synthetic data for improving the robustness of deep learning-based segmentation of cardiac magnetic resonance images. Al Khalil Y; Amirrajab S; Lorenz C; Weese J; Pluim J; Breeuwer M Med Image Anal; 2023 Feb; 84():102688. PubMed ID: 36493702 [TBL] [Abstract][Full Text] [Related]
30. Automatic segmentation of ultrasound images of gastrocnemius medialis with different echogenicity levels using convolutional neural networks. Marzola F; Alfen NV; Salvi M; Santi B; Doorduin J; Meiburger KM Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2113-2116. PubMed ID: 33018423 [TBL] [Abstract][Full Text] [Related]
32. Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Orlando N; Gillies DJ; Gyacskov I; Romagnoli C; D'Souza D; Fenster A Med Phys; 2020 Jun; 47(6):2413-2426. PubMed ID: 32166768 [TBL] [Abstract][Full Text] [Related]
33. C Zhang Z; Li Y; Shin BS Med Phys; 2022 Oct; 49(10):6491-6504. PubMed ID: 35981348 [TBL] [Abstract][Full Text] [Related]
34. Learning from adversarial medical images for X-ray breast mass segmentation. Shen T; Gou C; Wang FY; He Z; Chen W Comput Methods Programs Biomed; 2019 Oct; 180():105012. PubMed ID: 31421601 [TBL] [Abstract][Full Text] [Related]
35. Applications of Deep Learning: Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy. Chen JS; Marra KV; Robles-Holmes HK; Ly KB; Miller J; Wei G; Aguilar E; Bucher F; Ideguchi Y; Coyner AS; Ferrara N; Campbell JP; Friedlander M; Nudleman E Ophthalmol Sci; 2024; 4(1):100338. PubMed ID: 37869029 [TBL] [Abstract][Full Text] [Related]
36. CT2US: Cross-modal transfer learning for kidney segmentation in ultrasound images with synthesized data. Song Y; Zheng J; Lei L; Ni Z; Zhao B; Hu Y Ultrasonics; 2022 May; 122():106706. PubMed ID: 35149255 [TBL] [Abstract][Full Text] [Related]
37. Generative Adversarial Network Based Automatic Segmentation of Corneal Subbasal Nerves on In Vivo Confocal Microscopy Images. Yildiz E; Arslan AT; Yildiz Tas A; Acer AF; Demir S; Sahin A; Erol Barkana D Transl Vis Sci Technol; 2021 May; 10(6):33. PubMed ID: 34038501 [TBL] [Abstract][Full Text] [Related]
38. MSF-GAN: Multi-Scale Fuzzy Generative Adversarial Network for Breast Ultrasound Image Segmentation. Huang K; Zhang Y; Cheng HD; Xing P Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3193-3196. PubMed ID: 34891920 [TBL] [Abstract][Full Text] [Related]
39. Machine learning to extract muscle fascicle length changes from dynamic ultrasound images in real-time. Rosa LG; Zia JS; Inan OT; Sawicki GS PLoS One; 2021; 16(5):e0246611. PubMed ID: 34038426 [TBL] [Abstract][Full Text] [Related]
40. Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification. Pang T; Wong JHD; Ng WL; Chan CS Comput Methods Programs Biomed; 2021 May; 203():106018. PubMed ID: 33714900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]