These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 32544852)
1. In older women, a high-protein diet including animal-sourced foods did not impact serum levels and urinary excretion of trimethylamine-N-oxide. Dahl WJ; Hung WL; Ford AL; Suh JH; Auger J; Nagulesapillai V; Wang Y Nutr Res; 2020 Jun; 78():72-81. PubMed ID: 32544852 [TBL] [Abstract][Full Text] [Related]
2. Microbiota Stability and Gastrointestinal Tolerance in Response to a High-Protein Diet with and without a Prebiotic, Probiotic, and Synbiotic: A Randomized, Double-Blind, Placebo-Controlled Trial in Older Women. Ford AL; Nagulesapillai V; Piano A; Auger J; Girard SA; Christman M; Tompkins TA; Dahl WJ J Acad Nutr Diet; 2020 Apr; 120(4):500-516.e10. PubMed ID: 32199523 [TBL] [Abstract][Full Text] [Related]
3. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. Koeth RA; Lam-Galvez BR; Kirsop J; Wang Z; Levison BS; Gu X; Copeland MF; Bartlett D; Cody DB; Dai HJ; Culley MK; Li XS; Fu X; Wu Y; Li L; DiDonato JA; Tang WHW; Garcia-Garcia JC; Hazen SL J Clin Invest; 2019 Jan; 129(1):373-387. PubMed ID: 30530985 [TBL] [Abstract][Full Text] [Related]
4. The microbial gbu gene cluster links cardiovascular disease risk associated with red meat consumption to microbiota L-carnitine catabolism. Buffa JA; Romano KA; Copeland MF; Cody DB; Zhu W; Galvez R; Fu X; Ward K; Ferrell M; Dai HJ; Skye S; Hu P; Li L; Parlov M; McMillan A; Wei X; Nemet I; Koeth RA; Li XS; Wang Z; Sangwan N; Hajjar AM; Dwidar M; Weeks TL; Bergeron N; Krauss RM; Tang WHW; Rey FE; DiDonato JA; Gogonea V; Gerberick GF; Garcia-Garcia JC; Hazen SL Nat Microbiol; 2022 Jan; 7(1):73-86. PubMed ID: 34949826 [TBL] [Abstract][Full Text] [Related]
5. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos. Mei Z; Chen GC; Wang Z; Usyk M; Yu B; Baeza YV; Humphrey G; Benitez RS; Li J; Williams-Nguyen JS; Daviglus ML; Hou L; Cai J; Zheng Y; Knight R; Burk RD; Boerwinkle E; Kaplan RC; Qi Q Am J Clin Nutr; 2021 Jun; 113(6):1503-1514. PubMed ID: 33709132 [TBL] [Abstract][Full Text] [Related]
6. Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. Barrios C; Beaumont M; Pallister T; Villar J; Goodrich JK; Clark A; Pascual J; Ley RE; Spector TD; Bell JT; Menni C PLoS One; 2015; 10(8):e0134311. PubMed ID: 26241311 [TBL] [Abstract][Full Text] [Related]
7. Synbiotics Easing Renal Failure by Improving Gut Microbiology (SYNERGY): A Randomized Trial. Rossi M; Johnson DW; Morrison M; Pascoe EM; Coombes JS; Forbes JM; Szeto CC; McWhinney BC; Ungerer JP; Campbell KL Clin J Am Soc Nephrol; 2016 Feb; 11(2):223-31. PubMed ID: 26772193 [TBL] [Abstract][Full Text] [Related]
8. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Wang Z; Bergeron N; Levison BS; Li XS; Chiu S; Jia X; Koeth RA; Li L; Wu Y; Tang WHW; Krauss RM; Hazen SL Eur Heart J; 2019 Feb; 40(7):583-594. PubMed ID: 30535398 [TBL] [Abstract][Full Text] [Related]
9. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation. Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199 [TBL] [Abstract][Full Text] [Related]
10. Dietary, anthropometric, and biochemical factors influencing plasma choline, carnitine, trimethylamine, and trimethylamine-N-oxide concentrations. Malinowska AM; Szwengiel A; Chmurzynska A Int J Food Sci Nutr; 2017 Jun; 68(4):488-495. PubMed ID: 27855528 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous determination of choline, L-carnitine, betaine, trimethylamine, trimethylamine N-oxide, and creatinine in plasma, liver, and feces of hyperlipidemic rats by UHPLC-MS/MS. Xu C; Zhang M; Zhang S; Wang P; Lai C; Meng D; Chen Z; Yi X; Gao X J Chromatogr B Analyt Technol Biomed Life Sci; 2024 Aug; 1243():124210. PubMed ID: 38936270 [TBL] [Abstract][Full Text] [Related]
12. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Hoyles L; Jiménez-Pranteda ML; Chilloux J; Brial F; Myridakis A; Aranias T; Magnan C; Gibson GR; Sanderson JD; Nicholson JK; Gauguier D; McCartney AL; Dumas ME Microbiome; 2018 Apr; 6(1):73. PubMed ID: 29678198 [TBL] [Abstract][Full Text] [Related]
13. Exploration of the Fecal Microbiota and Biomarker Discovery in Equine Grass Sickness. Leng J; Proudman C; Darby A; Blow F; Townsend N; Miller A; Swann J J Proteome Res; 2018 Mar; 17(3):1120-1128. PubMed ID: 29364680 [TBL] [Abstract][Full Text] [Related]
14. High salt intake increases plasma trimethylamine N-oxide (TMAO) concentration and produces gut dysbiosis in rats. Bielinska K; Radkowski M; Grochowska M; Perlejewski K; Huc T; Jaworska K; Motooka D; Nakamura S; Ufnal M Nutrition; 2018 Oct; 54():33-39. PubMed ID: 29705499 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous quantification of trimethylamine N-oxide, trimethylamine, choline, betaine, creatinine, and propionyl-, acetyl-, and L-carnitine in clinical and food samples using HILIC-LC-MS. Hefni ME; Bergström M; Lennqvist T; Fagerström C; Witthöft CM Anal Bioanal Chem; 2021 Sep; 413(21):5349-5360. PubMed ID: 34258650 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery. West KA; Kanu C; Maric T; McDonald JAK; Nicholson JK; Li JV; Johnson MR; Holmes E; Savvidou MD Gut; 2020 Aug; 69(8):1452-1459. PubMed ID: 31964751 [TBL] [Abstract][Full Text] [Related]
17. Effects of dietary choline, betaine, and L-carnitine on the generation of trimethylamine-N-oxide in healthy mice. Yu ZL; Zhang LY; Jiang XM; Xue CH; Chi N; Zhang TT; Wang YM J Food Sci; 2020 Jul; 85(7):2207-2215. PubMed ID: 32572979 [TBL] [Abstract][Full Text] [Related]
18. Trimethylamine-N-oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Cho CE; Taesuwan S; Malysheva OV; Bender E; Tulchinsky NF; Yan J; Sutter JL; Caudill MA Mol Nutr Food Res; 2017 Jan; 61(1):. PubMed ID: 27377678 [TBL] [Abstract][Full Text] [Related]
19. Urinary TMAO Levels Are Associated with the Taxonomic Composition of the Gut Microbiota and with the Choline TMA-Lyase Gene ( Dalla Via A; Gargari G; Taverniti V; Rondini G; Velardi I; Gambaro V; Visconti GL; De Vitis V; Gardana C; Ragg E; Pinto A; Riso P; Guglielmetti S Nutrients; 2019 Dec; 12(1):. PubMed ID: 31881690 [TBL] [Abstract][Full Text] [Related]
20. Moderate Renal Impairment and Toxic Metabolites Produced by the Intestinal Microbiome: Dietary Implications. Pignanelli M; Bogiatzi C; Gloor G; Allen-Vercoe E; Reid G; Urquhart BL; Ruetz KN; Velenosi TJ; Spence JD J Ren Nutr; 2019 Jan; 29(1):55-64. PubMed ID: 30100156 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]