BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 32545205)

  • 21. Numerical modeling of a hybrid hollow-core fiber for enhanced mid-infrared guidance.
    Hayashi JG; Mousavi SMA; Ventura A; Poletti F
    Opt Express; 2021 May; 29(11):17042-17052. PubMed ID: 34154255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modal analysis of antiresonant hollow core fibers using S
    Newkirk AV; Antonio-Lopez JE; Anderson J; Alvarez-Aguirre R; Eznaveh ZS; Lopez-Galmiche G; Amezcua-Correa R; Schülzgen A
    Opt Lett; 2016 Jul; 41(14):3277-80. PubMed ID: 27420514
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Microchannels in a Nodeless Antiresonant Hollow-Core Fiber Using Femtosecond Laser Pulses.
    Kozioł P; Jaworski P; Krzempek K; Hoppe V; Dudzik G; Yu F; Wu D; Liao M; Knight J; Abramski K
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Temperature Plasmonic Sensor Based on a Side Opening Hollow Fiber Filled with High Refractive Index Sensing Medium.
    Zhao L; Han H; Luan N; Liu J; Song L; Hu Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hollow-Core Photonic Crystal Fiber Gas Sensing.
    Yu R; Chen Y; Shui L; Xiao L
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Part-per-billion level photothermal nitric oxide detection at 5.26 µm using antiresonant hollow-core fiber-based heterodyne interferometry.
    Krzempek K
    Opt Express; 2021 Sep; 29(20):32568-32579. PubMed ID: 34615323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-loss single-mode guidance in large-core antiresonant hollow-core fibers.
    Hartung A; Kobelke J; Schwuchow A; Bierlich J; Popp J; Schmidt MA; Frosch T
    Opt Lett; 2015 Jul; 40(14):3432-5. PubMed ID: 26176487
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid-filled hollow core microstructured polymer optical fiber.
    Cox FM; Argyros A; Large MC
    Opt Express; 2006 May; 14(9):4135-40. PubMed ID: 19516562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and fabrication of a chalcogenide hollow-core anti-resonant fiber for mid-infrared applications.
    Zhang H; Chang Y; Xu Y; Liu C; Xiao X; Li J; Ma X; Wang Y; Guo H
    Opt Express; 2023 Feb; 31(5):7659-7670. PubMed ID: 36859893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low loss hollow-core antiresonant fiber with nested supporting rings.
    Zhu Y; Song N; Gao F; Xu X
    Opt Express; 2021 Jan; 29(2):1659-1665. PubMed ID: 33726375
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fiber optofluidic Coriolis flowmeter based on a dual-antiresonant reflecting optical waveguide.
    Li Z; Gao R; Xin X; Zhang H; Chang H; Guo D; Wang F; Zhou S; Yu C; Liu X
    Opt Lett; 2022 Jul; 47(13):3259-3262. PubMed ID: 35776600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopy of 3D-trapped particles inside a hollow-core microstructured optical fiber.
    Rajapakse C; Wang F; Tang TC; Reece PJ; Leon-Saval SG; Argyros A
    Opt Express; 2012 May; 20(10):11232-40. PubMed ID: 22565745
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Higher-Order Mode Suppression in Antiresonant Nodeless Hollow-Core Fibers.
    Ge A; Meng F; Li Y; Liu B; Hu M
    Micromachines (Basel); 2019 Feb; 10(2):. PubMed ID: 30769944
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polarization evolution in single-ring antiresonant hollow-core fibers.
    Jayakumar N; Sollapur R; Hoffmann A; Grigorova T; Hartung A; Schwuchow A; Bierlich J; Kobelke J; Schmidt MA; Spielmann C
    Appl Opt; 2018 Oct; 57(29):8529-8535. PubMed ID: 30461919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultralow loss hollow-core negative curvature fibers with nested elliptical antiresonance tubes.
    Zhang J; Cao J; Yang B; Liu X; Cheng Y; Bao C; Xie S; Dong L; Hao Q
    Opt Express; 2022 May; 30(10):17437-17450. PubMed ID: 36221567
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Composite material hollow antiresonant fibers.
    Belardi W; De Lucia F; Poletti F; Sazio PJ
    Opt Lett; 2017 Jul; 42(13):2535-2538. PubMed ID: 28957278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly sensitive temperature and strain sensor based on an antiresonant hollow core fiber probe with the Vernier effect.
    Zhao X; Wu X; Mu S; Zuo C; Shi J; Guang D; Yu B; Liu Y; Zhang J; Liu X
    Appl Opt; 2022 Sep; 61(27):8133-8138. PubMed ID: 36255936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct performance comparison of antiresonant and Kagome hollow-core fibers in mid-IR wavelength modulation spectroscopy of ethane.
    Jaworski P; Wu D; Yu F; Krzempek K
    Opt Express; 2023 Jul; 31(15):24810-24820. PubMed ID: 37475299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-destructive characterization of nested and double nested antiresonant nodeless fiber microstructure geometry.
    Budd L; Numkam Fokoua E; Taranta A; Poletti F
    Opt Express; 2023 Oct; 31(22):36928-36939. PubMed ID: 38017832
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laser-Based Trace Gas Detection inside Hollow-Core Fibers: A Review.
    Nikodem M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32916799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.