These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32545229)

  • 1. Investigation of the Effect of Process Parameters on Bone Grinding Performance Based on On-Line Measurement of Temperature and Force Sensors.
    Zhang L; Zou L; Wen D; Wang X; Kong F; Piao Z
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32545229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo evaluation of machining forces, torque, and bone quality during skull bone grinding.
    Babbar A; Jain V; Gupta D
    Proc Inst Mech Eng H; 2020 Jun; 234(6):626-638. PubMed ID: 32181700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared thermography of high-speed grinding of bone in skull base neurosurgery.
    Shakouri E; Mirfallah P
    Proc Inst Mech Eng H; 2019 Jun; 233(6):648-656. PubMed ID: 31017535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery.
    Zhang L; Tai BL; Wang G; Zhang K; Sullivan S; Shih AJ
    Med Eng Phys; 2013 Oct; 35(10):1391-8. PubMed ID: 23683875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical investigation of heat generation and surface integrity of ZrO
    Bayat M; Adibi H; Barzegar A; Rezaei SM
    J Mech Behav Biomed Mater; 2022 Jul; 131():105226. PubMed ID: 35429766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones.
    Singh RP; Pandey PM; Behera C; Mridha AR
    Proc Inst Mech Eng H; 2020 Aug; 234(8):829-842. PubMed ID: 32490719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature prediction in high speed bone grinding using motor PWM signal.
    Tai BL; Zhang L; Wang AC; Sullivan S; Wang G; Shih AJ
    Med Eng Phys; 2013 Oct; 35(10):1545-9. PubMed ID: 23806419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient and Precise Grinding of Sapphire Glass Based on Dry Electrical Discharge Dressed Coarse Diamond Grinding Wheel.
    Lu Y; Luo W; Wu X; Zhou C; Xu B; Zhao H; Li L
    Micromachines (Basel); 2019 Sep; 10(9):. PubMed ID: 31546823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical bone grinding mechanism modeling and experimental studyfor damage minimization in craniotomy.
    Hu Y; Hu X; Fan Z; Liu Z; Zhang C; Fu W
    Proc Inst Mech Eng H; 2022 Mar; 236(3):320-328. PubMed ID: 34894878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histological evaluation of thermal damage to Osteocytes: A comparative study of conventional and ultrasonic-assisted bone grinding.
    Babbar A; Jain V; Gupta D; Agrawal D
    Med Eng Phys; 2021 Apr; 90():1-8. PubMed ID: 33781475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-Fourier bioheat model for bone grinding with application to skull base neurosurgery.
    Kabiri A; Talaee MR
    Proc Inst Mech Eng H; 2022 Jan; 236(1):84-93. PubMed ID: 34423707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tangential Ultrasonic-Vibration Assisted Forming Grinding Gear: An Experimental Study.
    Bie W; Zhao B; Gao G; Chen F; Jin J
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Tool Forces in Manual Grinding Using Consumer-Grade Sensors and Machine Learning.
    Dörr M; Ott L; Matthiesen S; Gwosch T
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of coring conditions on temperature rise in bone.
    Islam MM; Wang X
    Biomed Mater Eng; 2017; 28(2):201-211. PubMed ID: 28372271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Study on the Grinding of an Fe-Cr-Co Permanent Magnet Alloy under a Small Cutting Depth.
    Wang N; Jiang F; Zhu J; Xu Y; Shi C; Yan H; Gu C
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of operating variables in improving the performance of skull base grinding.
    Gholampour S; Droessler J; Frim D
    Neurosurg Rev; 2022 Jun; 45(3):2431-2440. PubMed ID: 35258695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machining of bone: Analysis of cutting force and surface roughness by turning process.
    Noordin MY; Jiawkok N; Ndaruhadi PY; Kurniawan D
    Proc Inst Mech Eng H; 2015 Nov; 229(11):761-8. PubMed ID: 26399875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation and integration of CEM43 °C and Arrhenius Models for ultrasonic-assisted skull bone grinding: A thermal dose model.
    Babbar A; Jain V; Gupta D; Agrawal D
    Med Eng Phys; 2021 Apr; 90():9-22. PubMed ID: 33781484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of applied force and blade speed on histopathology of bone during resection by sagittal saw.
    James TP; Chang G; Micucci S; Sagar A; Smith EL; Cassidy C
    Med Eng Phys; 2014 Mar; 36(3):364-70. PubMed ID: 24405736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.
    Tahmasbi V; Ghoreishi M; Zolfaghari M
    Proc Inst Mech Eng H; 2017 Nov; 231(11):1012-1024. PubMed ID: 28803514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.