These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32545324)

  • 1. Numerical Simulation Development and Computational Optimization for Directed Energy Deposition Additive Manufacturing Process.
    Kiran A; Hodek J; Vavřík J; Urbánek M; Džugan J
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32545324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conventional Meso-Scale and Time-Efficient Sub-Track-Scale Thermomechanical Model for Directed Energy Deposition.
    Nain V; Engel T; Carin M; Boisselier D
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat Source Modeling and Residual Stress Analysis for Metal Directed Energy Deposition Additive Manufacturing.
    Kiran A; Li Y; Hodek J; Brázda M; Urbánek M; Džugan J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation Prediction and Experimental Study of 316L Stainless Steel Thin-Walled Parts Processed by Additive-Subtractive Hybrid Manufacturing.
    Wu X; Zhu W; He Y
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34639980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 316L Stainless Steel Thin-Walled Parts Hybrid-Layered Manufacturing Process Study.
    Wu X; Su C; Zhang K
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual Stress Control Using Process Optimization in Directed Energy Deposition.
    Cheng M; Zou X; Pan Y; Zhou Y; Liu W; Song L
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Simulation and Experimental Study on Residual Stress in the Curved Surface Forming of 12CrNi2 Alloy Steel by Laser Melting Deposition.
    Cui Z; Hu X; Dong S; Yan S; Zhao X
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Numerical Investigation in Directed Energy Deposition for Component Repair.
    Li L; Zhang X; Liou F
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33799448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modification of Residual Stresses in Laser Additive Manufactured AlSi10Mg Specimens Using an Ultrasonic Peening Technique.
    Xing X; Duan X; Sun X; Gong H; Wang L; Jiang F
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30717209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Effect of Process Parameters on the Temperature and Stress Fields in Directed Energy Deposition Inconel 690 Alloy.
    Liu C; Zhan Y; Zhao H; Shang S; Liu C
    Materials (Basel); 2024 Mar; 17(6):. PubMed ID: 38541492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation Method of Interpass Time for the Control of Temperature during a Directed Energy Deposition Process of a Ti-6Al-4V Planar Layer.
    Chua BL; Ahn DG
    Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33153041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation.
    Kaess M; Werz M; Weihe S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Behaviour of Thin-Walled DED-Processed Structure: Experimental-Numerical Approach.
    Urbánek M; Hodek J; Melzer D; Koukolíková M; Prantl A; Vavřík J; Brázda M; Martínek P; Rzepa S; Džugan J
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Base Plate Preheating Effect on Microstructure of 316L Stainless Steel Single Track Deposition by Directed Energy Deposition.
    Kiran A; Koukolíková M; Vavřík J; Urbánek M; Džugan J
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Process Parameters on Welding Residual Stress of 316L Stainless Steel Pipe.
    Jiang X; Wang W; Xu C; Li J; Lu J
    Materials (Basel); 2024 May; 17(10):. PubMed ID: 38793269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition.
    Piscopo G; Atzeni E; Salmi A
    Materials (Basel); 2019 Sep; 12(17):. PubMed ID: 31480677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning.
    Era IZ; Grandhi M; Liu Z
    Int J Adv Manuf Technol; 2022; 121(3-4):2445-2459. PubMed ID: 35730034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Laser welding simulation of large-scale assembly module of stainless steel side-wall.
    Li Y; Wang Y; Yin X; Zhang Z
    Heliyon; 2023 Mar; 9(3):e13835. PubMed ID: 36895368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Modeling Design for the Hybrid Additive Manufacturing of Laser Directed Energy Deposition and Shot Peening Forming Fe-Cr-Ni-B-Si Alloy.
    Zhang X; Li D; Zhu W
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33143133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of Wire Arc Additive Manufacturing in the Reinforcement of a Half-Cylinder Shell Geometry.
    Zhao XF; Zapata A; Bernauer C; Baehr S; Zaeh MF
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.