These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 32545381)

  • 1. A Comparative Study of Silicon Carbide Merged PiN Schottky Diodes with Electrical-Thermal Coupled Considerations.
    Wu J; Ren N; Guo Q; Sheng K
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32545381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Process Conditions on Surge Current Capability of 1.2 kV SiC JBS and MPS Diodes.
    Xu H; Ren N; Wu J; Zhu Z; Guo Q; Sheng K
    Materials (Basel); 2021 Jan; 14(3):. PubMed ID: 33572683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Temperature Sensing Performance of 4H-SiC Schottky Barrier Diodes, Junction Barrier Schottky Diodes, and PiN Diodes.
    Min SJ; Schweitz MA; Nguyen NT; Koo SM
    J Nanosci Nanotechnol; 2021 Mar; 21(3):2001-2004. PubMed ID: 33404483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of wafer thinning and thermal capacitance on chip temperature of SiC Schottky diodes during surge currents.
    Damcevska J; Dimitrijev S; Haasmann D; Tanner P
    Sci Rep; 2023 Nov; 13(1):19189. PubMed ID: 37932325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carrier lifetime modulation on current capability of SiC PiN diodes in a pulsed system.
    Xu X; Zhang L; Li L; Li Z; Li J; Zhang J; Dong P
    Discov Nano; 2023 Oct; 18(1):128. PubMed ID: 37845558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Temperature Sensors Based on Dual 4H-SiC JBS and SBD Devices.
    Min SJ; Shin MC; Thi Nguyen N; Oh JM; Koo SM
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials and Processes for Schottky Contacts on Silicon Carbide.
    Vivona M; Giannazzo F; Roccaforte F
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient temperature measurement of silicon carbide Schottky barrier diode based on thermal reflection.
    Wang J; Zhou L; Meng X; Cheng H; Feng S; Zhang Y
    Rev Sci Instrum; 2024 Jun; 95(6):. PubMed ID: 38829219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of 1200 V SiC MOSFETs' Surge Reliability.
    Li H; Wang J; Ren N; Xu H; Sheng K
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31323884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal characterization of gallium oxide Schottky barrier diodes.
    Chatterjee B; Jayawardena A; Heller E; Snyder DW; Dhar S; Choi S
    Rev Sci Instrum; 2018 Nov; 89(11):114903. PubMed ID: 30501276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals.
    Shtepliuk I; Eriksson J; Khranovskyy V; Iakimov T; Lloyd Spetz A; Yakimova R
    Beilstein J Nanotechnol; 2016; 7():1800-1814. PubMed ID: 28144530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution Processed Schottky Diodes Enabled by Silicon Carbide Nanowires for Harsh Environment Applications.
    Chen KY; Tripathy PK; Mondal K; Zhang H; Couet A; Andrews JB
    Nano Lett; 2023 Apr; 23(7):2816-2821. PubMed ID: 37011402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thorough Wide-Temperature-Range Analysis of Pt/SiC and Cr/SiC Schottky Contact Non-Uniformity.
    Pascu R; Pristavu G; Oneata DT; Brezeanu G; Romanitan C; Djourelov N; Enache A; Draghici F; Ivan AM; Ceuca E
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and Experimental Study of 13.4 kV/55 A SiC PiN Diodes with an Improved Trade-Off between Blocking Voltage and Differential On-Resistance.
    Liu Y; Yang R; Wang Y; Zhang Z; Deng X
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31842506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Status and Prospects of Cubic Silicon Carbide Power Electronics Device Technology.
    Li F; Roccaforte F; Greco G; Fiorenza P; La Via F; Pérez-Tomas A; Evans JE; Fisher CA; Monaghan FA; Mawby PA; Jennings M
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiation Response of Large-Area 4H-SiC Schottky Barrier Diodes.
    Bernat R; Knežević T; Radulović V; Snoj L; Makino T; Ohshima T; Capan I
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and Characterization of Oxygenated AlN/4H-SiC Heterojunction Diodes.
    Kim DH; Min SJ; Oh JM; Koo SM
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 33003505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TCAD simulation for alpha-particle spectroscopy using SIC Schottky diode.
    Das A; Duttagupta SP
    Radiat Prot Dosimetry; 2015 Dec; 167(4):443-52. PubMed ID: 25634901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal Impedance Characterization Using Optical Measurement Assisted by Multi-Physics Simulation for Multi-Chip SiC MOSFET Module.
    Kim MK; Yoon SW
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33265986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and Simulations of 4H-SiC/6H-SiC/4H-SiC Single Quantum-Well Light Emitting Diode Using Diffusion Bonding Technique.
    Rashid MH; Koel A; Rang T; Nasir N; Mehmood H; Cheema S
    Micromachines (Basel); 2021 Nov; 12(12):. PubMed ID: 34945347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.