BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32545393)

  • 1. The Role of Structural Representation in the Performance of a Deep Neural Network for X-Ray Spectroscopy.
    Madkhali MMM; Rankine CD; Penfold TJ
    Molecules; 2020 Jun; 25(11):. PubMed ID: 32545393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Neural Network for the Rapid Prediction of X-ray Absorption Spectra.
    Rankine CD; Madkhali MMM; Penfold TJ
    J Phys Chem A; 2020 May; 124(21):4263-4270. PubMed ID: 32369378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond structural insight: a deep neural network for the prediction of Pt L
    Watson L; Rankine CD; Penfold TJ
    Phys Chem Chem Phys; 2022 Apr; 24(16):9156-9167. PubMed ID: 35393987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing the analysis of disorder in X-ray absorption spectra: application of deep neural networks to T-jump-X-ray probe experiments.
    Madkhali MMM; Rankine CD; Penfold TJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):9259-9269. PubMed ID: 33885072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate, affordable, and generalizable machine learning simulations of transition metal x-ray absorption spectra using the XANESNET deep neural network.
    Rankine CD; Penfold TJ
    J Chem Phys; 2022 Apr; 156(16):164102. PubMed ID: 35490005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-edge X-ray absorption spectroscopy. 1. X-ray absorption near-edge structure analysis of a biomimetic model of FeFe-hydrogenase.
    Giles LJ; Grigoropoulos A; Szilagyi RK
    J Phys Chem A; 2012 Dec; 116(50):12280-98. PubMed ID: 23145835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural network assisted analysis of bimetallic nanocatalysts using X-ray absorption near edge structure spectroscopy.
    Marcella N; Liu Y; Timoshenko J; Guan E; Luneau M; Shirman T; Plonka AM; van der Hoeven JES; Aizenberg J; Friend CM; Frenkel AI
    Phys Chem Chem Phys; 2020 Sep; 22(34):18902-18910. PubMed ID: 32393945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning.
    Liu Y; Marcella N; Timoshenko J; Halder A; Yang B; Kolipaka L; Pellin MJ; Seifert S; Vajda S; Liu P; Frenkel AI
    J Chem Phys; 2019 Oct; 151(16):164201. PubMed ID: 31675887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.
    Shi Q; Chen W; Huang S; Jin F; Dong Y; Wang Y; Xue Z
    Bioinformatics; 2019 Dec; 35(24):5128-5136. PubMed ID: 31197306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: a temperature-dependent x-ray absorption near-edge structure (XANES) study.
    Arcovito A; Lamb DC; Nienhaus GU; Hazemann JL; Benfatto M; Della Longa S
    Biophys J; 2005 Apr; 88(4):2954-64. PubMed ID: 15681649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural investigation of lanthanoid coordination: a combined XANES and molecular dynamics study.
    D'Angelo P; Zitolo A; Migliorati V; Mancini G; Persson I; Chillemi G
    Inorg Chem; 2009 Nov; 48(21):10239-48. PubMed ID: 19788258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Latent Representation Learning for Structural Characterization of Catalysts.
    Routh PK; Liu Y; Marcella N; Kozinsky B; Frenkel AI
    J Phys Chem Lett; 2021 Mar; 12(8):2086-2094. PubMed ID: 33620230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling data-limited chemical bioactivity predictions through deep neural network transfer learning.
    Liu R; Laxminarayan S; Reifman J; Wallqvist A
    J Comput Aided Mol Des; 2022 Dec; 36(12):867-878. PubMed ID: 36272041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Deep and Shallow Learning Methods for Quantitative Prediction of Acute Chemical Toxicity.
    Liu R; Madore M; Glover KP; Feasel MG; Wallqvist A
    Toxicol Sci; 2018 Aug; 164(2):512-526. PubMed ID: 29722883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning approaches for ELNES/XANES.
    Mizoguchi T; Kiyohara S
    Microscopy (Oxf); 2020 Apr; 69(2):92-109. PubMed ID: 31993623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty quantification of spectral predictions using deep neural networks.
    Verma S; Aznan NKN; Garside K; Penfold TJ
    Chem Commun (Camb); 2023 Jun; 59(46):7100-7103. PubMed ID: 37218454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray absorption spectroscopy of hemes and hemeproteins in solution: multiple scattering analysis.
    D'Angelo P; Lapi A; Migliorati V; Arcovito A; Benfatto M; Roscioni OM; Meyer-Klaucke W; Della-Longa S
    Inorg Chem; 2008 Nov; 47(21):9905-18. PubMed ID: 18837548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.