These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 32545482)

  • 1. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment.
    Hossain MT; Yokono T; Kashiwagi A
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32545482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of silent mutations to thermal adaptation of RNA bacteriophage Qβ.
    Kashiwagi A; Sugawara R; Sano Tsushima F; Kumagai T; Yomo T
    J Virol; 2014 Oct; 88(19):11459-68. PubMed ID: 25056887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of adaptive mutations, from thermal adaptation experiments, on the infection cycle of RNA bacteriophage Qβ.
    Kashiwagi A; Kadoya T; Kumasaka N; Kumagai T; Tsushima FS; Yomo T
    Arch Virol; 2018 Oct; 163(10):2655-2662. PubMed ID: 29869034
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered 3'-terminal RNA structure in phage Qbeta adapted to host factor-less Escherichia coli.
    Schuppli D; Miranda G; Tsui HC; Winkler ME; Sogo JM; Weber H
    Proc Natl Acad Sci U S A; 1997 Sep; 94(19):10239-42. PubMed ID: 9294194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intra-Population Competition during Adaptation to Increased Temperature in an RNA Bacteriophage.
    Arribas M; Lázaro E
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary adaptation of an RNA bacteriophage to the simultaneous increase in the within-host and extracellular temperatures.
    Lázaro E; Arribas M; Cabanillas L; Román I; Acosta E
    Sci Rep; 2018 May; 8(1):8080. PubMed ID: 29795535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fitness effects of random mutations in single-stranded DNA and RNA bacteriophages.
    Domingo-Calap P; Cuevas JM; Sanjuán R
    PLoS Genet; 2009 Nov; 5(11):e1000742. PubMed ID: 19956760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strongly reduced phage Qbeta replication, but normal phage MS2 replication in an Escherichia coli K12 mutant with inactivated Qbeta host factor (hfq) gene.
    Su Q; Schuppli D; Tsui HcT ; Winkler ME; Weber H
    Virology; 1997 Jan; 227(1):211-4. PubMed ID: 9007075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary Adaptation of an RNA Bacteriophage to Repeated Freezing and Thawing Cycles.
    Laguna-Castro M; Rodríguez-Moreno A; Lázaro E
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergism of mutations in bacteriophage Qbeta RNA affecting host factor dependence of Qbeta replicase.
    Schuppli D; Georgijevic J; Weber H
    J Mol Biol; 2000 Jan; 295(2):149-54. PubMed ID: 10623514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ongoing phenotypic and genomic changes in experimental coevolution of RNA bacteriophage Qβ and Escherichia coli.
    Kashiwagi A; Yomo T
    PLoS Genet; 2011 Aug; 7(8):e1002188. PubMed ID: 21829387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Escherichia coli mutant with a temperature-sensitive function affecting bacteriophage Qbeta RNA replication.
    Mandal NC; Silverman PM
    Proc Natl Acad Sci U S A; 1977 Apr; 74(4):1657-61. PubMed ID: 323859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive selection at high temperature reduces gene transcription in the bacteriophage ϕX174.
    Brown CJ; Zhao L; Evans KJ; Ally D; Stancik AD
    BMC Evol Biol; 2010 Dec; 10():378. PubMed ID: 21129199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The balance between fitness advantages and costs drives adaptation of bacteriophage Qβ to changes in host density at different temperatures.
    Laguna-Castro M; Rodríguez-Moreno A; Llorente E; Lázaro E
    Front Microbiol; 2023; 14():1197085. PubMed ID: 37303783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-RNA Interactions in the Single-Stranded RNA Bacteriophages.
    Rūmnieks J; Tārs K
    Subcell Biochem; 2018; 88():281-303. PubMed ID: 29900502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Evaluation of a Novel Armored RNA Technology Using Bacteriophage Qβ.
    Yao L; Li F; Qu M; Guo Y; Jiang Y; Wang L; Zhai Y
    Food Environ Virol; 2019 Dec; 11(4):383-392. PubMed ID: 31435846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standing Genetic Diversity and Transmission Bottleneck Size Drive Adaptation in Bacteriophage Qβ.
    Somovilla P; Rodríguez-Moreno A; Arribas M; Manrubia S; Lázaro E
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The genetic basis of thermal reaction norm evolution in lab and natural phage populations.
    Knies JL; Izem R; Supler KL; Kingsolver JG; Burch CL
    PLoS Biol; 2006 Jul; 4(7):e201. PubMed ID: 16732695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptomycin-resistant Escherichia coli mutant temperature sensitive for the production of Qbeta-infective particles.
    Engelberg-Kulka H; Dekel L; Israeli-Reches M
    J Virol; 1977 Jan; 21(1):1-6. PubMed ID: 319250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent Advances in Structural Studies of Single-Stranded RNA Bacteriophages.
    Thongchol J; Lill Z; Hoover Z; Zhang J
    Viruses; 2023 Sep; 15(10):. PubMed ID: 37896763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.