These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32545609)
41. Distinct progression pattern of susceptibility MRI in the substantia nigra of Parkinson's patients. Du G; Lewis MM; Sica C; He L; Connor JR; Kong L; Mailman RB; Huang X Mov Disord; 2018 Sep; 33(9):1423-1431. PubMed ID: 29756399 [TBL] [Abstract][Full Text] [Related]
42. Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson's disease motor subtypes in early-stages. Panahi M; Hosseini MS Sci Rep; 2024 Sep; 14(1):20708. PubMed ID: 39237644 [TBL] [Abstract][Full Text] [Related]
44. Progressive supranuclear palsy affects both the substantia nigra pars compacta and reticulata. Hardman CD; Halliday GM; McRitchie DA; Cartwright HR; Morris JG Exp Neurol; 1997 Mar; 144(1):183-92. PubMed ID: 9126169 [TBL] [Abstract][Full Text] [Related]
45. Neurofilament mRNA is reduced in Parkinson's disease substantia nigra pars compacta neurons. Hill WD; Arai M; Cohen JA; Trojanowski JQ J Comp Neurol; 1993 Mar; 329(3):328-36. PubMed ID: 8459049 [TBL] [Abstract][Full Text] [Related]
46. Parkinson's Disease: Exploring Different Animal Model Systems. Khan E; Hasan I; Haque ME Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240432 [TBL] [Abstract][Full Text] [Related]
47. MRI-based Identification and Classification of Major Intracranial Tumor Types by Using a 3D Convolutional Neural Network: A Retrospective Multi-institutional Analysis. Chakrabarty S; Sotiras A; Milchenko M; LaMontagne P; Hileman M; Marcus D Radiol Artif Intell; 2021 Sep; 3(5):e200301. PubMed ID: 34617029 [TBL] [Abstract][Full Text] [Related]
48. Diagnostic accuracy study of automated stratification of Alzheimer's disease and mild cognitive impairment via deep learning based on MRI. Chen X; Tang M; Liu A; Wei X Ann Transl Med; 2022 Jul; 10(14):765. PubMed ID: 35965800 [TBL] [Abstract][Full Text] [Related]
49. An Explainable Machine Learning Model for Early Detection of Parkinson's Disease using LIME on DaTSCAN Imagery. Magesh PR; Myloth RD; Tom RJ Comput Biol Med; 2020 Nov; 126():104041. PubMed ID: 33074113 [TBL] [Abstract][Full Text] [Related]
50. Parkinson's disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation. Yasaka K; Kamagata K; Ogawa T; Hatano T; Takeshige-Amano H; Ogaki K; Andica C; Akai H; Kunimatsu A; Uchida W; Hattori N; Aoki S; Abe O Neuroradiology; 2021 Sep; 63(9):1451-1462. PubMed ID: 33481071 [TBL] [Abstract][Full Text] [Related]
51. Relationship between neuromelanin and dopamine terminals within the Parkinson's nigrostriatal system. Martín-Bastida A; Lao-Kaim NP; Roussakis AA; Searle GE; Xing Y; Gunn RN; Schwarz ST; Barker RA; Auer DP; Piccini P Brain; 2019 Jul; 142(7):2023-2036. PubMed ID: 31056699 [TBL] [Abstract][Full Text] [Related]
52. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI. Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522 [TBL] [Abstract][Full Text] [Related]
53. A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database. Tack A; Shestakov A; Lüdke D; Zachow S Front Bioeng Biotechnol; 2021; 9():747217. PubMed ID: 34926416 [TBL] [Abstract][Full Text] [Related]
54. A radiomics approach for predicting gait freezing in Parkinson's disease based on resting-state functional magnetic resonance imaging indices: a cross-sectional study. Guo M; Liu H; Gao L; Yu H; Ren Y; Li Y; Yang H; Cao C; Fan G Neural Regen Res; 2024 Jul; ():. PubMed ID: 39104178 [TBL] [Abstract][Full Text] [Related]
55. Radiomics on routine T1-weighted MRI can delineate Parkinson's disease from multiple system atrophy and progressive supranuclear palsy. Tupe-Waghmare P; Rajan A; Prasad S; Saini J; Pal PK; Ingalhalikar M Eur Radiol; 2021 Nov; 31(11):8218-8227. PubMed ID: 33945022 [TBL] [Abstract][Full Text] [Related]
56. In vivo detection of lateral-ventral tier nigral degeneration in Parkinson's disease. Huddleston DE; Langley J; Sedlacik J; Boelmans K; Factor SA; Hu XP Hum Brain Mapp; 2017 May; 38(5):2627-2634. PubMed ID: 28240402 [TBL] [Abstract][Full Text] [Related]
57. Curriculum Based Multi-Task Learning for Parkinson's Disease Detection. Dhinagar NJ; Owens-Walton C; Laltoo E; Boyle CP; Chen YL; Cook P; McMillan C; Tsai CC; Wang JJ; Wu YR; van der Werf Y; Thompson PM ArXiv; 2023 Feb; ():. PubMed ID: 36911283 [TBL] [Abstract][Full Text] [Related]
58. Longitudinal Connectomes as a Candidate Progression Marker for Prodromal Parkinson's Disease. Peña-Nogales Ó; Ellmore TM; de Luis-García R; Suescun J; Schiess MC; Giancardo L Front Neurosci; 2018; 12():967. PubMed ID: 30686966 [TBL] [Abstract][Full Text] [Related]
59. MRI T Lee H; Baek SY; Kim EJ; Huh GY; Lee JH; Cho H Neuroimage; 2020 May; 211():116625. PubMed ID: 32058001 [TBL] [Abstract][Full Text] [Related]
60. Combining Diffusion Tensor Imaging and Susceptibility Weighted Imaging on the Substantia Nigra of 1-Methyl-4-Phenyl-1, 2, 3, 6-Tetrahydropyridine (MPTP)-induced Rhesus Monkey Model of Parkinson's Disease. Zhang Q; Li L; Miao B; Niu H West Indian Med J; 2015 Dec; 64(5):480-486. PubMed ID: 27400227 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]