These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 32545628)

  • 21. The rose petal effect and the modes of superhydrophobicity.
    Bhushan B; Nosonovsky M
    Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioinspired Interfaces with Superwettability: From Materials to Chemistry.
    Su B; Tian Y; Jiang L
    J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrics coated with lubricated nanostructures display robust omniphobicity.
    Shillingford C; MacCallum N; Wong TS; Kim P; Aizenberg J
    Nanotechnology; 2014 Jan; 25(1):014019. PubMed ID: 24334333
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanically durable carbon nanotube-composite hierarchical structures with superhydrophobicity, self-cleaning, and low-drag.
    Jung YC; Bhushan B
    ACS Nano; 2009 Dec; 3(12):4155-63. PubMed ID: 19947581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions.
    Nosonovsky M; Bhushan B
    Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transparent, abrasion-insensitive superhydrophobic coatings for real-world applications.
    Helmer D; Keller N; Kotz F; Stolz F; Greiner C; Nargang TM; Sachsenheimer K; Rapp BE
    Sci Rep; 2017 Nov; 7(1):15078. PubMed ID: 29118407
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mimicking natural superhydrophobic surfaces and grasping the wetting process: a review on recent progress in preparing superhydrophobic surfaces.
    Yan YY; Gao N; Barthlott W
    Adv Colloid Interface Sci; 2011 Dec; 169(2):80-105. PubMed ID: 21974918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.
    Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM
    J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apparent Contact Angles on Lubricant-Impregnated Surfaces/SLIPS: From Superhydrophobicity to Electrowetting.
    McHale G; Orme BV; Wells GG; Ledesma-Aguilar R
    Langmuir; 2019 Mar; 35(11):4197-4204. PubMed ID: 30759342
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Atmospheric Ice Adhesion on Water-Repellent Coatings: Wetting and Surface Topology Effects.
    Yeong YH; Milionis A; Loth E; Sokhey J; Lambourne A
    Langmuir; 2015 Dec; 31(48):13107-16. PubMed ID: 26566168
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amphiphobic Nanostructured Coatings for Industrial Applications.
    Veronesi F; Boveri G; Raimondo M
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30866464
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mapping micrometer-scale wetting properties of superhydrophobic surfaces.
    Daniel D; Lay CL; Sng A; Jun Lee CJ; Jin Neo DC; Ling XY; Tomczak N
    Proc Natl Acad Sci U S A; 2019 Dec; 116(50):25008-25012. PubMed ID: 31772014
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Superhydrophobic surfaces: from natural to biomimetic to functional.
    Guo Z; Liu W; Su BL
    J Colloid Interface Sci; 2011 Jan; 353(2):335-55. PubMed ID: 20846662
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing superoleophobic surfaces.
    Tuteja A; Choi W; Ma M; Mabry JM; Mazzella SA; Rutledge GC; McKinley GH; Cohen RE
    Science; 2007 Dec; 318(5856):1618-22. PubMed ID: 18063796
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wetting on fractal superhydrophobic surfaces from "core-shell" particles: a comparison of theory and experiment.
    Synytska A; Ionov L; Grundke K; Stamm M
    Langmuir; 2009 Mar; 25(5):3132-6. PubMed ID: 19437778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Force-Based Wetting Characterization of Stochastic Superhydrophobic Coatings at Nanonewton Sensitivity.
    Hokkanen MJ; Backholm M; Vuckovac M; Zhou Q; Ras RHA
    Adv Mater; 2021 Oct; 33(42):e2105130. PubMed ID: 34469006
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal matrix composites for sustainable lotus-effect surfaces.
    Nosonovsky M; Hejazi V; Nyong AE; Rohatgi PK
    Langmuir; 2011 Dec; 27(23):14419-24. PubMed ID: 21999807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-Recovery Superhydrophobic Surfaces: Modular Design.
    Lisi E; Amabili M; Meloni S; Giacomello A; Casciola CM
    ACS Nano; 2018 Jan; 12(1):359-367. PubMed ID: 29182848
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.