BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32545741)

  • 1. Bioprinting and Preliminary Testing of Highly Reproducible Novel Bioink for Potential Skin Regeneration.
    Hafezi F; Shorter S; Tabriz AG; Hurt A; Elmes V; Boateng J; Douroumis D
    Pharmaceutics; 2020 Jun; 12(6):. PubMed ID: 32545741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of highly-reproducible hydrogel based bioink for regeneration of skin-tissues via 3-D bioprinting technology.
    Ullah F; Javed F; Mushtaq I; Rahman LU; Ahmed N; Din IU; Alotaibi MA; Alharthi AI; Ahmad A; Bakht MA; Khan F; Tasleem S
    Int J Biol Macromol; 2023 Mar; 230():123131. PubMed ID: 36610570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink.
    Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C
    J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells.
    Ouyang L; Yao R; Zhao Y; Sun W
    Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial bioprinting of cell-laden vascular constructs using a gelatin-tyramine bioink.
    Hong S; Kim JS; Jung B; Won C; Hwang C
    Biomater Sci; 2019 Nov; 7(11):4578-4587. PubMed ID: 31433402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Marine Collagen-Based Bioink for 3D Bioprinting of a Bilayered Skin Model.
    Cavallo A; Al Kayal T; Mero A; Mezzetta A; Pisani A; Foffa I; Vecoli C; Buscemi M; Guazzelli L; Soldani G; Losi P
    Pharmaceutics; 2023 Apr; 15(5):. PubMed ID: 37242573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs.
    Shi Y; Xing TL; Zhang HB; Yin RX; Yang SM; Wei J; Zhang WJ
    Biomed Mater; 2018 Mar; 13(3):035008. PubMed ID: 29307874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D bioprinting of a hyaluronan bioink through enzymatic-and visible light-crosslinking.
    Petta D; Armiento AR; Grijpma D; Alini M; Eglin D; D'Este M
    Biofabrication; 2018 Sep; 10(4):044104. PubMed ID: 30188324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters.
    Coşkun S; Akbulut SO; Sarıkaya B; Çakmak S; Gümüşderelioğlu M
    Int J Biol Macromol; 2022 Dec; 222(Pt A):1453-1464. PubMed ID: 36113600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategy to Achieve Highly Porous/Biocompatible Macroscale Cell Blocks, Using a Collagen/Genipin-bioink and an Optimal 3D Printing Process.
    Kim YB; Lee H; Kim GH
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32230-32240. PubMed ID: 27933843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting.
    Cavallo A; Al Kayal T; Mero A; Mezzetta A; Guazzelli L; Soldani G; Losi P
    J Funct Biomater; 2023 Sep; 14(9):. PubMed ID: 37754873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing bioink shape fidelity to aid material development in 3D bioprinting.
    Ribeiro A; Blokzijl MM; Levato R; Visser CW; Castilho M; Hennink WE; Vermonden T; Malda J
    Biofabrication; 2017 Nov; 10(1):014102. PubMed ID: 28976364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced Bioink for 3D Bioprinting of Complex Free-Standing Structures with High Stiffness.
    Gu Y; Schwarz B; Forget A; Barbero A; Martin I; Shastri VP
    Bioengineering (Basel); 2020 Nov; 7(4):. PubMed ID: 33171883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-/thermo-responsive bioink for improved printability in extrusion-based bioprinting.
    Moon SH; Park TY; Cha HJ; Yang YJ
    Mater Today Bio; 2024 Apr; 25():100973. PubMed ID: 38322663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH.
    Diamantides N; Wang L; Pruiksma T; Siemiatkoski J; Dugopolski C; Shortkroff S; Kennedy S; Bonassar LJ
    Biofabrication; 2017 Jul; 9(3):034102. PubMed ID: 28677597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Three-Dimensional Bioprinted Copolymer Scaffold with Biocompatibility and Structural Integrity for Potential Tissue Regeneration Applications.
    Peng BY; Ou KL; Liu CM; Chu SF; Huang BH; Cho YC; Saito T; Tsai CH; Hung KS; Lan WC
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration.
    Kim W; Kim G
    Biofabrication; 2019 Nov; 12(1):015007. PubMed ID: 31509811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kappa-Carrageenan-Based Dual Crosslinkable Bioink for Extrusion Type Bioprinting.
    Lim W; Kim GJ; Kim HW; Lee J; Zhang X; Kang MG; Seo JW; Cha JM; Park HJ; Lee MY; Shin SR; Shin SY; Bae H
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33076526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.