These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32545886)

  • 21. Motion Estimation by Hybrid Optical Flow Technology for UAV Landing in an Unvisited Area.
    Cheng HW; Chen TL; Tien CH
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897741
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of remote-weed mapping and an autonomous spraying unmanned aerial vehicle for site-specific weed management.
    Hunter JE; Gannon TW; Richardson RJ; Yelverton FH; Leon RG
    Pest Manag Sci; 2020 Apr; 76(4):1386-1392. PubMed ID: 31622004
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unmanned aerial vehicles for surveying marine fauna: assessing detection probability.
    Hodgson A; Peel D; Kelly N
    Ecol Appl; 2017 Jun; 27(4):1253-1267. PubMed ID: 28178755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coverage Area Decision Model by Using Unmanned Aerial Vehicles Base Stations for Ad Hoc Networks.
    Majeed S; Sohail A; Qureshi KN; Iqbal S; Javed IT; Crespi N; Nagmeldin W; Abdelmaboud A
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015890
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Towards Autonomous Modular UAV Missions: The Detection, Geo-Location and Landing Paradigm.
    Kyristsis S; Antonopoulos A; Chanialakis T; Stefanakis E; Linardos C; Tripolitsiotis A; Partsinevelos P
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A low-altitude public air route network for UAV management constructed by global subdivision grids.
    Zhai W; Han B; Li D; Duan J; Cheng C
    PLoS One; 2021; 16(4):e0249680. PubMed ID: 33852616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved UAV Opium Poppy Detection Using an Updated YOLOv3 Model.
    Zhou J; Tian Y; Yuan C; Yin K; Yang G; Wen M
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31703380
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
    Wang L; Jiang X; Wang D; Wang L; Tu Z; Ai J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501768
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coupling of machine learning methods to improve estimation of ground coverage from unmanned aerial vehicle (UAV) imagery for high-throughput phenotyping of crops.
    Hu P; Chapman SC; Zheng B
    Funct Plant Biol; 2021 Jul; 48(8):766-779. PubMed ID: 33663681
    [TBL] [Abstract][Full Text] [Related]  

  • 31. UAV Landing Based on the Optical Flow Videonavigation.
    Miller B; Miller A; Popov A; Stepanyan K
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30889892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multispectral remote sensing for accurate acquisition of rice phenotypes: Impacts of radiometric calibration and unmanned aerial vehicle flying altitudes.
    Luo S; Jiang X; Yang K; Li Y; Fang S
    Front Plant Sci; 2022; 13():958106. PubMed ID: 36035659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of the power lines in UAV remote sensed images using spectral-spatial methods.
    Bhola R; Krishna NH; Ramesh KN; Senthilnath J; Anand G
    J Environ Manage; 2018 Jan; 206():1233-1242. PubMed ID: 28931461
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology.
    Torres-Sánchez J; López-Granados F; Serrano N; Arquero O; Peña JM
    PLoS One; 2015; 10(6):e0130479. PubMed ID: 26107174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting the Health Status of an Unmanned Aerial Vehicles Data-Link System Based on a Bayesian Network.
    Wang X; Guo H; Wang J; Wang L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30428631
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying the Branch of Kiwifruit Based on Unmanned Aerial Vehicle (UAV) Images Using Deep Learning Method.
    Niu Z; Deng J; Zhang X; Zhang J; Pan S; Mu H
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34209571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UAV remote sensing applications in marine monitoring: Knowledge visualization and review.
    Yang Z; Yu X; Dedman S; Rosso M; Zhu J; Yang J; Xia Y; Tian Y; Zhang G; Wang J
    Sci Total Environ; 2022 Sep; 838(Pt 1):155939. PubMed ID: 35577092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual-Inertial Approach.
    Chang CW; Lo LY; Cheung HC; Feng Y; Yang AS; Wen CY; Zhou W
    Sensors (Basel); 2022 Jan; 22(1):. PubMed ID: 35009946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor.
    Nguyen PH; Kim KW; Lee YW; Park KR
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visual Navigation and Landing Control of an Unmanned Aerial Vehicle on a Moving Autonomous Surface Vehicle via Adaptive Learning.
    Zhang HT; Hu BB; Xu Z; Cai Z; Liu B; Wang X; Geng T; Zhong S; Zhao J
    IEEE Trans Neural Netw Learn Syst; 2021 Dec; 32(12):5345-5355. PubMed ID: 34048350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.