These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 32545886)

  • 41. The application of low-altitude near-infrared aerial photography for detecting clandestine burials using a UAV and low-cost unmodified digital camera.
    Evers R; Masters P
    Forensic Sci Int; 2018 Aug; 289():408-418. PubMed ID: 30025566
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thrust Vectoring Control of a Novel Tilt-Rotor UAV Based on Backstepping Sliding Model Method.
    Yu Z; Zhang J; Wang X
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic identification of agricultural terraces through object-oriented analysis of very high resolution DSMs and multispectral imagery obtained from an unmanned aerial vehicle.
    Diaz-Varela RA; Zarco-Tejada PJ; Angileri V; Loudjani P
    J Environ Manage; 2014 Feb; 134():117-26. PubMed ID: 24473345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Applications of low altitude remote sensing in agriculture upon farmers' requests--a case study in northeastern Ontario, Canada.
    Zhang C; Walters D; Kovacs JM
    PLoS One; 2014; 9(11):e112894. PubMed ID: 25386696
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Altitude Measurement-Based Optimization of the Landing Process of UAVs.
    Horla D; Giernacki W; Cieślak J; Campoy P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562147
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images.
    Tunca E; Köksal ES; Çetin S; Ekiz NM; Balde H
    Environ Monit Assess; 2018 Oct; 190(11):682. PubMed ID: 30374821
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detecting Wheat Powdery Mildew and Predicting Grain Yield Using Unmanned Aerial Photography.
    Liu W; Cao X; Fan J; Wang Z; Yan Z; Luo Y; West JS; Xu X; Zhou Y
    Plant Dis; 2018 Oct; 102(10):1981-1988. PubMed ID: 30125137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Fractional vegetation cover of invasive Spartina alterniflora in coastal wetland using unmanned aerial vehicle (UAV)remote sensing].
    Zhou ZM; Yang YM; Chen BQ
    Ying Yong Sheng Tai Xue Bao; 2016 Dec; 27(12):3920-3926. PubMed ID: 29704351
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study.
    Eker R; Aydın A; Hübl J
    Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fast Detection of
    Cao F; Liu F; Guo H; Kong W; Zhang C; He Y
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30562959
    [No Abstract]   [Full Text] [Related]  

  • 51. Monitoring of beach litter by automatic interpretation of unmanned aerial vehicle images using the segmentation threshold method.
    Bao Z; Sha J; Li X; Hanchiso T; Shifaw E
    Mar Pollut Bull; 2018 Dec; 137():388-398. PubMed ID: 30503448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Preflight Contingency Planning Approach for Fixed Wing UAVs with Engine Failure in the Presence of Winds.
    Ayhan B; Kwan C; Budavari B; Larkin J; Gribben D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634477
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of spatial and temporal variability of pasture growth and digestibility in grazing rotations coupling unmanned aerial vehicle (UAV) with crop simulation models.
    Insua JR; Utsumi SA; Basso B
    PLoS One; 2019; 14(3):e0212773. PubMed ID: 30865650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. HIT-UAV: A high-altitude infrared thermal dataset for Unmanned Aerial Vehicle-based object detection.
    Suo J; Wang T; Zhang X; Chen H; Zhou W; Shi W
    Sci Data; 2023 Apr; 10(1):227. PubMed ID: 37080987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Automatic Landing of Unmanned Aerial Vehicles via Wireless Positioning System with Pseudo-Conical Scanning.
    Iliev I; Nachev I
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36080910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estimation of free-roaming domestic dog population size: Investigation of three methods including an Unmanned Aerial Vehicle (UAV) based approach.
    Warembourg C; Berger-González M; Alvarez D; Maximiano Sousa F; López Hernández A; Roquel P; Eyerman J; Benner M; Dürr S
    PLoS One; 2020; 15(4):e0225022. PubMed ID: 32267848
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Deep learning based banana plant detection and counting using high-resolution red-green-blue (RGB) images collected from unmanned aerial vehicle (UAV).
    Neupane B; Horanont T; Hung ND
    PLoS One; 2019; 14(10):e0223906. PubMed ID: 31622450
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Autonomous Quadcopter Landing on a Moving Target.
    Gautam A; Singh M; Sujit PB; Saripalli S
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sentinel-2 Data for Precision Agriculture?-A UAV-Based Assessment.
    Bukowiecki J; Rose T; Kage H
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.