These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32545957)

  • 1. Graphene Oxide as an Effective Soil Water Retention Agent Can Confer Drought Stress Tolerance to
    Zhao D; Fang Z; Tang Y; Tao J
    Environ Sci Technol; 2020 Jul; 54(13):8269-8279. PubMed ID: 32545957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of fulvic acid on the photosynthetic and physiological characteristics of
    Fang Z; Wang X; Zhang X; Zhao D; Tao J
    Plant Signal Behav; 2020 Jul; 15(7):1774714. PubMed ID: 32498663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging.
    Zhao D; Luan Y; Shi W; Zhang X; Meng J; Tao J
    Plant Sci; 2021 Feb; 303():110765. PubMed ID: 33487350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional Characterization of the
    Luan Y; An H; Chen Z; Zhao D; Tao J
    Plants (Basel); 2024 Aug; 13(15):. PubMed ID: 39124262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-walled carbon nanotubes prevent high temperature-induced damage by activating the ascorbate-glutathione cycle in Paeonia ostii T. Hong et J. X. Zhang.
    Zhao D; Wang X; Cheng Z; Tang Y; Tao J
    Ecotoxicol Environ Saf; 2021 Dec; 227():112948. PubMed ID: 34755632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PoWRKY71 is involved in
    Luan Y; Chen Z; Fang Z; Huang X; Zhao D; Tao J
    Hortic Res; 2023 Nov; 10(11):uhad194. PubMed ID: 38023485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of drought stress on physiological responses and gene expression changes in herbaceous peony (
    Li T; Wang R; Zhao D; Tao J
    Plant Signal Behav; 2020 May; 15(5):1746034. PubMed ID: 32264754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and biochemical responses of Quercus pubescens to air warming and drought on acidic and calcareous soils.
    Contran N; Günthardt-Goerg MS; Kuster TM; Cerana R; Crosti P; Paoletti E
    Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():157-68. PubMed ID: 22672383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Heavy metals pollution of Paeonia ostii land at copper-tailings reservoir of Tongling city: a preliminary study].
    Shen Z; Wang Y; Wang G; Yan M; Li Z; Liu D
    Ying Yong Sheng Tai Xue Bao; 2005 Apr; 16(4):673-7. PubMed ID: 16011165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitraria sibirica adapts to long-term soil water deficit by reducing photosynthesis, stimulating antioxidant systems, and accumulating osmoregulators.
    Chang Y; Lv G
    Plant Physiol Biochem; 2024 Jan; 206():108265. PubMed ID: 38091936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alleviation role of functional carbon nanodots for tomato growth and soil environment under drought stress.
    Chen Q; Cao X; Nie X; Li Y; Liang T; Ci L
    J Hazard Mater; 2022 Feb; 423(Pt B):127260. PubMed ID: 34844369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon improves photosynthesis and strengthens enzyme activities in the C
    Kang J; Zhao W; Zhu X
    J Plant Physiol; 2016 Jul; 199():76-86. PubMed ID: 27302008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated CO
    Li B; Feng Y; Zong Y; Zhang D; Hao X; Li P
    Plant Physiol Biochem; 2020 Sep; 154():105-114. PubMed ID: 32535322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene Oxide, a Novel Nanomaterial as Soil Water Retention Agent, Dramatically Enhances Drought Stress Tolerance in Soybean Plants.
    Zhao L; Wang W; Fu X; Liu A; Cao J; Liu J
    Front Plant Sci; 2022; 13():810905. PubMed ID: 35242153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Physiological responses of five plants in northwest China arid area under drought stress].
    Ding L; Zhao HM; Zeng WJ; Li Q; Wang Y; Wang SQ
    Ying Yong Sheng Tai Xue Bao; 2017 May; 28(5):1455-1463. PubMed ID: 29745180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii.
    Wang Y; Dong C; Xue Z; Jin Q; Xu Y
    Gene; 2016 Jan; 576(1 Pt 1):126-35. PubMed ID: 26435192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression profiles of genes involved in fatty acid and lipid biosynthesis in developing seeds of Paeonia ostii.
    Li C; Hu L; Que B; Hu Y; Guo Y; Zhang M; Wang Z; Wang X; Liu H; Wang J; Tian H; Li X
    Genes Genomics; 2021 Aug; 43(8):885-896. PubMed ID: 33884569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of microRNAs from tree peony (Paeonia ostii) and their response to copper stress.
    Jin Q; Xue Z; Dong C; Wang Y; Chu L; Xu Y
    PLoS One; 2015; 10(2):e0117584. PubMed ID: 25658957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Heavy metals accumulation in different parts of Paeonia ostii and soils at copper tailings yard].
    Wang Y; Zhang L; Liu D
    Ying Yong Sheng Tai Xue Bao; 2004 Dec; 15(12):2351-4. PubMed ID: 15825455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The
    Zhang H; Zhang S; Li M; Wang J; Wu T
    Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.