These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 32546104)

  • 1. Force-velocity profiling in ice hockey skating: reliability and validity of a simple, low-cost field method.
    Stenroth L; Vartiainen P; Karjalainen PA
    Sports Biomech; 2023 Jul; 22(7):874-889. PubMed ID: 32546104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of the force-velocity-power variables during ice hockey sprint acceleration.
    Perez J; Guilhem G; Brocherie F
    Sports Biomech; 2022 Jan; 21(1):56-70. PubMed ID: 31464169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical determinants of forward skating sprint inferred from off- and on-ice force-velocity evaluations in elite female ice hockey players.
    Perez J; Guilhem G; Hager R; Brocherie F
    Eur J Sport Sci; 2021 Feb; 21(2):192-203. PubMed ID: 32241241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ice Hockey Forward Skating Force-Velocity Profiling Using Single Unloaded vs. Multiple Loaded Methods.
    Perez J; Guilhem G; Brocherie F
    J Strength Cond Res; 2022 Nov; 36(11):3229-3233. PubMed ID: 34175878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reliability of Three Timing Systems Used to Time Short on Ice-Skating Sprints in Ice Hockey Players.
    Bond CW; Willaert EM; Rudningen KE; Noonan BC
    J Strength Cond Res; 2017 Dec; 31(12):3279-3286. PubMed ID: 28858060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Skating Top Speed, Acceleration, and Multiple Repeated Sprint Speed Ice Hockey Performance Tests.
    Bond CW; Bennett TW; Noonan BC
    J Strength Cond Res; 2018 Aug; 32(8):2273-2283. PubMed ID: 29878985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An on-ice measurement approach to analyse the biomechanics of ice hockey skating.
    Buckeridge E; LeVangie MC; Stetter B; Nigg SR; Nigg BM
    PLoS One; 2015; 10(5):e0127324. PubMed ID: 25973775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of Joint Angle-Specific Hip Strength for Skating Performance in Semiprofessional Ice Hockey Athletes.
    Secomb JL; Dascombe BJ; Nimphius S
    J Strength Cond Res; 2021 Sep; 35(9):2599-2603. PubMed ID: 34431485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the Polar Team Pro System for Sprint Speed With Ice Hockey Players.
    Conners RT; Whitehead PN; Dodds FT; Schott KD; Quick MC
    J Strength Cond Res; 2022 Dec; 36(12):3468-3472. PubMed ID: 32881841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships to skating performance in competitive hockey players.
    Farlinger CM; Kruisselbrink LD; Fowles JR
    J Strength Cond Res; 2007 Aug; 21(3):915-22. PubMed ID: 17685681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards a wearable monitoring tool for in-field ice hockey skating performance analysis.
    Stetter BJ; Buckeridge E; Nigg SR; Sell S; Stein T
    Eur J Sport Sci; 2019 Aug; 19(7):893-901. PubMed ID: 30606093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing-Specific Skating Performance in Ice Hockey.
    Hajek F; Keller M; Taube W; von Duvillard SP; Bell JW; Wagner H
    J Strength Cond Res; 2021 Dec; 35(Suppl 12):S70-S75. PubMed ID: 32149873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Relationship Between Lower-Body Force-Time Variables and Skating Performance in Female Ice Hockey Players.
    Geneau MC; Tsai MC; Agar-Newman D; Geneau DJ; Klimstra M; James LP
    Int J Sports Physiol Perform; 2023 Dec; 18(12):1427-1434. PubMed ID: 37739401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Off-Ice Resisted Sprints Best Predict All-Out Skating Performance in Varsity Hockey Players.
    Thompson KMA; Safadie A; Ford J; Burr JF
    J Strength Cond Res; 2022 Sep; 36(9):2597-2601. PubMed ID: 33136771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship Between Physiological Off-Ice Testing, On-Ice Skating, and Game Performance in Division I Female Ice Hockey Players.
    Boland M; Delude K; Miele EM
    J Strength Cond Res; 2019 Jun; 33(6):1619-1628. PubMed ID: 29016475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship of off-ice and on-ice performance measures in high school male hockey players.
    Krause DA; Smith AM; Holmes LC; Klebe CR; Lee JB; Lundquist KM; Eischen JJ; Hollman JH
    J Strength Cond Res; 2012 May; 26(5):1423-30. PubMed ID: 22395275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology of ice hockey.
    Montgomery DL
    Sports Med; 1988 Feb; 5(2):99-126. PubMed ID: 3281210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of High-Intensity Skating in Top-Class Ice Hockey Match-Play in Relation to Training Status and Muscle Damage.
    Lignell E; Fransson D; Krustrup P; Mohr M
    J Strength Cond Res; 2018 May; 32(5):1303-1310. PubMed ID: 28557852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability, usefulness, and validity of the 30-15 Intermittent Ice Test in young elite ice hockey players.
    Buchheit M; Lefebvre B; Laursen PB; Ahmaidi S
    J Strength Cond Res; 2011 May; 25(5):1457-64. PubMed ID: 21522077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association Between Physical Performance Tests and External Load During Scrimmages in Highly Trained Youth Ice Hockey Players.
    Byrkjedal PT; Bjørnsen T; Luteberget LS; Lindberg K; Ivarsson A; Haukali E; Spencer M
    Int J Sports Physiol Perform; 2023 Jan; 18(1):47-54. PubMed ID: 36470253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.