These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 32546411)
1. Ultrasound Contrast Agent Modeling: A Review. Versluis M; Stride E; Lajoinie G; Dollet B; Segers T Ultrasound Med Biol; 2020 Sep; 46(9):2117-2144. PubMed ID: 32546411 [TBL] [Abstract][Full Text] [Related]
2. Microbubble oscillating in a microvessel filled with viscous fluid: A finite element modeling study. Chen C; Gu Y; Tu J; Guo X; Zhang D Ultrasonics; 2016 Mar; 66():54-64. PubMed ID: 26651263 [TBL] [Abstract][Full Text] [Related]
3. 20 years of ultrasound contrast agent modeling. Faez T; Emmer M; Kooiman K; Versluis M; van der Steen A; de Jong N IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jan; 60(1):7-20. PubMed ID: 23287909 [TBL] [Abstract][Full Text] [Related]
4. Ultrasonic characterization of ultrasound contrast agents. de Jong N; Emmer M; van Wamel A; Versluis M Med Biol Eng Comput; 2009 Aug; 47(8):861-73. PubMed ID: 19468770 [TBL] [Abstract][Full Text] [Related]
5. A model for the dynamics of ultrasound contrast agents in vivo. Qin S; Ferrara KW J Acoust Soc Am; 2010 Sep; 128(3):1511-21. PubMed ID: 20815486 [TBL] [Abstract][Full Text] [Related]
6. Microbubble spectroscopy of ultrasound contrast agents. van der Meer SM; Dollet B; Voormolen MM; Chin CT; Bouakaz A; de Jong N; Versluis M; Lohse D J Acoust Soc Am; 2007 Jan; 121(1):648-56. PubMed ID: 17297818 [TBL] [Abstract][Full Text] [Related]
8. Modeling complicated rheological behaviors in encapsulating shells of lipid-coated microbubbles accounting for nonlinear changes of both shell viscosity and elasticity. Li Q; Matula TJ; Tu J; Guo X; Zhang D Phys Med Biol; 2013 Feb; 58(4):985-98. PubMed ID: 23339902 [TBL] [Abstract][Full Text] [Related]
9. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig. Helbert A; Gaud E; Segers T; Botteron C; Frinking P; Jeannot V Ultrasound Med Biol; 2020 Dec; 46(12):3339-3352. PubMed ID: 33008649 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of contrast agent destruction. Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791 [TBL] [Abstract][Full Text] [Related]
12. Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles. Doinikov AA; Haac JF; Dayton PA Ultrasonics; 2009 Feb; 49(2):269-75. PubMed ID: 18990417 [TBL] [Abstract][Full Text] [Related]
13. Method for microbubble characterization using primary radiation force. Vos HJ; Guidi F; Boni E; Tortoli P IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jul; 54(7):1333-45. PubMed ID: 17718322 [TBL] [Abstract][Full Text] [Related]
14. Diagnostic and therapeutic research on ultrasound microbubble/nanobubble contrast agents (Review). Ma J; Xu CS; Gao F; Chen M; Li F; Du LF Mol Med Rep; 2015 Sep; 12(3):4022-4028. PubMed ID: 26081968 [TBL] [Abstract][Full Text] [Related]
15. Contrast-Enhanced Ultrasound Quantification: From Kinetic Modeling to Machine Learning. Turco S; Frinking P; Wildeboer R; Arditi M; Wijkstra H; Lindner JR; Mischi M Ultrasound Med Biol; 2020 Mar; 46(3):518-543. PubMed ID: 31924424 [TBL] [Abstract][Full Text] [Related]
16. Predicting the acoustic response of a microbubble population for contrast imaging in medical ultrasound. Chin CT; Burns PN Ultrasound Med Biol; 2000 Oct; 26(8):1293-300. PubMed ID: 11120367 [TBL] [Abstract][Full Text] [Related]
17. Interaction of an ultrasound-activated contrast microbubble with a wall at arbitrary separation distances. Doinikov AA; Bouakaz A Phys Med Biol; 2015 Oct; 60(20):7909-25. PubMed ID: 26407104 [TBL] [Abstract][Full Text] [Related]