BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 32546521)

  • 21. H2-rich fluids from serpentinization: geochemical and biotic implications.
    Sleep NH; Meibom A; Fridriksson T; Coleman RG; Bird DK
    Proc Natl Acad Sci U S A; 2004 Aug; 101(35):12818-23. PubMed ID: 15326313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative Metagenomics Highlight a Widespread Pathway Involved in Catabolism of Phosphonates in Marine and Terrestrial Serpentinizing Ecosystems.
    Frouin E; Lecoeuvre A; Armougom F; Schrenk MO; Erauso G
    mSystems; 2022 Aug; 7(4):e0032822. PubMed ID: 35913189
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioenergetic constraints on the origin of autotrophic metabolism.
    Boyd ES; Amenabar MJ; Poudel S; Templeton AS
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20190151. PubMed ID: 31902344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CO
    Hudson R; de Graaf R; Strandoo Rodin M; Ohno A; Lane N; McGlynn SE; Yamada YMA; Nakamura R; Barge LM; Braun D; Sojo V
    Proc Natl Acad Sci U S A; 2020 Sep; 117(37):22873-22879. PubMed ID: 32900930
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The inevitable journey to being.
    Russell MJ; Nitschke W; Branscomb E
    Philos Trans R Soc Lond B Biol Sci; 2013 Jul; 368(1622):20120254. PubMed ID: 23754808
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A late Paleoproterozoic (1.74 Ga) deep-sea, low-temperature, iron-oxidizing microbial hydrothermal vent community from Arizona, USA.
    Little CTS; Johannessen KC; Bengtson S; Chan CS; Ivarsson M; Slack JF; Broman C; Thorseth IH; Grenne T; Rouxel OJ; Bekker A
    Geobiology; 2021 May; 19(3):228-249. PubMed ID: 33594795
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems.
    McCollom TM; Shock EL
    Geochim Cosmochim Acta; 1997 Oct; 61(20):4375-91. PubMed ID: 11541662
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Habitability of the marine serpentinite subsurface: a case study of the Lost City hydrothermal field.
    Lang SQ; Brazelton WJ
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180429. PubMed ID: 31902336
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An origin-of-life reactor to simulate alkaline hydrothermal vents.
    Herschy B; Whicher A; Camprubi E; Watson C; Dartnell L; Ward J; Evans JR; Lane N
    J Mol Evol; 2014 Dec; 79(5-6):213-27. PubMed ID: 25428684
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methyl bromide: ocean sources, ocean sinks, and climate sensitivity.
    Anbar AD; Yung YL; Chavez FP
    Global Biogeochem Cycles; 1996 Mar; 10(1):175-90. PubMed ID: 11539402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.
    Klein F; Humphris SE; Guo W; Schubotz F; Schwarzenbach EM; Orsi WD
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12036-41. PubMed ID: 26324888
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.
    Perner M; Hansen M; Seifert R; Strauss H; Koschinsky A; Petersen S
    Geobiology; 2013 Jul; 11(4):340-55. PubMed ID: 23647923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of life on the evolution of the atmosphere.
    Walker JC
    Life Sci Space Res; 1980; 18():89-100. PubMed ID: 11968213
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mantle redox evolution and the oxidation state of the Archean atmosphere.
    Kasting JF; Eggler DH; Raeburn SP
    J Geol; 1993 Mar; 101(2):245-57. PubMed ID: 11537741
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How did the evolution of oxygenic photosynthesis influence the temporal and spatial development of the microbial iron cycle on ancient Earth?
    Schad M; Konhauser KO; Sánchez-Baracaldo P; Kappler A; Bryce C
    Free Radic Biol Med; 2019 Aug; 140():154-166. PubMed ID: 31323314
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A hydrogen-rich early Earth atmosphere.
    Tian F; Toon OB; Pavlov AA; De Sterck H
    Science; 2005 May; 308(5724):1014-7. PubMed ID: 15817816
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The evolution of the prebiotic atmosphere.
    Kasting JF
    Orig Life; 1984; 14(1-4):75-82. PubMed ID: 11536587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals.
    Mayhew LE; Ellison ET
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2165):20180420. PubMed ID: 31902340
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth.
    Kasting JF; Pollack JB
    J Atmos Chem; 1984; 1():403-28. PubMed ID: 11541984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prebiotic ammonia from reduction of nitrite by iron (II) on the early Earth.
    Summers DP; Chang S
    Nature; 1993 Oct; 365():630-3. PubMed ID: 11540245
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.