These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32546569)

  • 21. Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots.
    Yamauchi T; Shiono K; Nagano M; Fukazawa A; Ando M; Takamure I; Mori H; Nishizawa NK; Kawai-Yamada M; Tsutsumi N; Kato K; Nakazono M
    Plant Physiol; 2015 Sep; 169(1):180-93. PubMed ID: 26036614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Salt-Treated Roots of Oryza australiensis Seedlings are Enriched with Proteins Involved in Energetics and Transport.
    Yichie Y; Hasan MT; Tobias PA; Pascovici D; Goold HD; Van Sluyter SC; Roberts TH; Atwell BJ
    Proteomics; 2019 Oct; 19(19):e1900175. PubMed ID: 31475433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots.
    Ni L; Wang S; Shen T; Wang Q; Chen C; Xia J; Jiang M
    Plant Signal Behav; 2020 Nov; 15(11):1813999. PubMed ID: 32857669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Iron and callose homeostatic regulation in rice roots under low phosphorus.
    Ding Y; Wang Z; Ren M; Zhang P; Li Z; Chen S; Ge C; Wang Y
    BMC Plant Biol; 2018 Dec; 18(1):326. PubMed ID: 30514218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rice acclimation to soil flooding: Low concentrations of organic acids can trigger a barrier to radial oxygen loss in roots.
    Colmer TD; Kotula L; Malik AI; Takahashi H; Konnerup D; Nakazono M; Pedersen O
    Plant Cell Environ; 2019 Jul; 42(7):2183-2197. PubMed ID: 30989660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitro-oxidative stress induces the formation of roots' cortical aerenchyma in rice under osmotic stress.
    Basu S; Kumari S; Kumar A; Shahid R; Kumar S; Kumar G
    Physiol Plant; 2021 Jun; 172(2):963-975. PubMed ID: 33826753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism of plant mediated methane emission in tropical lowland rice.
    Bhattacharyya P; Dash PK; Swain CK; Padhy SR; Roy KS; Neogi S; Berliner J; Adak T; Pokhare SS; Baig MJ; Mohapatra T
    Sci Total Environ; 2019 Feb; 651(Pt 1):84-92. PubMed ID: 30223222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon enhances suberization and lignification in roots of rice (Oryza sativa).
    Fleck AT; Nye T; Repenning C; Stahl F; Zahn M; Schenk MK
    J Exp Bot; 2011 Mar; 62(6):2001-11. PubMed ID: 21172812
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Abscisic acid-dependent nitric oxide pathway and abscisic acid-independent nitric oxide routes differently modulate NaCl stress induction of the gene expression of methionine sulfoxide reductase A and B in rice roots.
    Hsu YT; Lee TM
    J Plant Physiol; 2018 Dec; 231():374-382. PubMed ID: 30388677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aerenchyma and an inducible barrier to radial oxygen loss facilitate root aeration in upland, paddy and deep-water rice (Oryza sativa L.).
    Colmer TD
    Ann Bot; 2003 Jan; 91 Spec No(2):301-9. PubMed ID: 12509350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rice OsERF71-mediated root modification affects shoot drought tolerance.
    Lee DK; Yoon S; Kim YS; Kim JK
    Plant Signal Behav; 2017 Jan; 12(1):e1268311. PubMed ID: 27935412
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OsMYB2P-1, an R2R3 MYB transcription factor, is involved in the regulation of phosphate-starvation responses and root architecture in rice.
    Dai X; Wang Y; Yang A; Zhang WH
    Plant Physiol; 2012 May; 159(1):169-83. PubMed ID: 22395576
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression profiles in rice roots under low phosphorus stress.
    Li L; Liu C; Lian X
    Plant Mol Biol; 2010 Mar; 72(4-5):423-32. PubMed ID: 19936943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Uptake and Volatilization of Gaseous Elemental Mercury by Paddy Rice].
    Shang S; Tian P; Jiang Y; Wu JX; Jiang S; Deng H
    Huan Jing Ke Xue; 2017 Dec; 38(12):5308-5314. PubMed ID: 29964595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. OsMOGS is required for N-glycan formation and auxin-mediated root development in rice (Oryza sativa L.).
    Wang S; Xu Y; Li Z; Zhang S; Lim JM; Lee KO; Li C; Qian Q; Jiang A; Qi Y
    Plant J; 2014 May; 78(4):632-645. PubMed ID: 24597623
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular mechanism of crown root initiation and the different mechanisms between crown root and radicle in rice.
    Kitomi Y; Kitano H; Inukai Y
    Plant Signal Behav; 2011 Sep; 6(9):1270-8. PubMed ID: 21847023
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx.
    Tang Z; Fan X; Li Q; Feng H; Miller AJ; Shen Q; Xu G
    Plant Physiol; 2012 Dec; 160(4):2052-63. PubMed ID: 23093362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake.
    Liu J; Cao C; Wong M; Zhang Z; Chai Y
    J Environ Sci (China); 2010; 22(7):1067-72. PubMed ID: 21174997
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurements of oxygen permeability coefficients of rice (Oryza sativa L.) roots using a new perfusion technique.
    Kotula L; Steudle E
    J Exp Bot; 2009; 60(2):567-80. PubMed ID: 19088333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots.
    Zhang Y; Wang Y; Taylor JL; Jiang Z; Zhang S; Mei F; Wu Y; Wu P; Ni J
    J Exp Bot; 2015 May; 66(9):2535-45. PubMed ID: 25754405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.